Metaheuristics for Production Scheduling

Description:
This book describes the potentialities of metaheuristics for solving production scheduling problems and the relationship between these two fields.
For the past several years, there has been an increasing interest in using metaheuristic methods to solve scheduling problems. The main reasons for this are that such problems are generally hard to solve to optimality, as well as the fact that metaheuristics provide very good solutions in a reasonable time. The first part of the book presents eight applications of metaheuristics for solving various mono-objective scheduling problems. The second part is itself split into two, the first section being devoted to five multi-objective problems to which metaheuristics are adapted, while the second tackles various transportation problems related to the organization of production systems.
Many real-world applications are presented by the authors, making this an invaluable resource for researchers and students in engineering, economics, mathematics and computer science.

Contents

7. Models and Methods in Graph Coloration for Various Production Problems, Nicolas Zufferey.
9. Metaheuristics for Biobjective Flow Shop Scheduling, Matthieu Basseur and Arnaud Liefooghe.
15. Combination of a Metaheuristic and a Simulation Model for the Scheduling of Resource-constrained Transport Activities, Virginie André, Nathalie Grangeon and Sylvie Norre.
16. Vehicle Routing Problems with Scheduling Constraints, Rahma Lahyani, Frédéric Semet and Benoît Trouillet.
17. Metaheuristics for Job Shop Scheduling with Transportation, Qiao Zhang, Hervé Manier, Marie-Ange Manier.

About the Authors

Bassem Jarboui is Professor at the University of Sfax, Tunisia.
Patrick Siarry is Professor at the Laboratoire Images, Signaux et Systèmes Intelligents (LISSI), University of Paris-Est Créteil, France.
Jacques Teghem is Professor at the University of Mons, Belgium.
Chapter 1. An Estimation of Distribution Algorithm for Solving Flow Shop Scheduling Problems with Sequence-dependent Family Setup Times
Mansour EDDALY, Bassem JARBOUI, Radhouan BOUABDA, Patrick SIARRY and Abdelwaheb REBAÎ

1.1. Introduction 1
1.2. Mathematical formulation 3
1.3. Estimation of distribution algorithms 5
1.3.1. Estimation of distribution algorithms proposed in the literature 6
1.4. The proposed estimation of distribution algorithm 8
1.4.1. Encoding scheme and initial population 8
1.4.2. Selection 9
1.4.3. Probability estimation 9
1.5. Iterated local search algorithm 10
1.6. Experimental results 11
1.7. Conclusion 15
1.8. Bibliography 15

Chapter 2. Genetic Algorithms for Solving Flexible Job Shop Scheduling Problems
Imed KACEM

2.1. Introduction 19
2.2. Flexible job shop scheduling problems 19
2.3. Genetic algorithms for some related sub-problems 25
2.4. Genetic algorithms for the flexible job shop problem 31
2.4.1. Codings 31
2.4.2. Mutation operators 34
2.4.3. Crossover operators 38
2.5. Comparison of codings 42
2.6. Conclusion 43
2.7. Bibliography 43

Chapter 3. A Hybrid GRASP-Differential Evolution Algorithm for Solving Flow Shop Scheduling Problems with No-Wait Constraints
Hanen AKROUT, Bassem JARBOUI, Patrick SIARRY and Abdelwaheb REBAÎ

3.1. Introduction 45
3.2. Overview of the literature 47
3.2.1. Single-solution metaheuristics 47
5.2.1. Landscape in a combinatorial optimization problem
5.2.2. Neutrality and landscape
5.3. Study of neutrality in the flow shop problem
5.3.1. Neutral degree
5.3.2. Structure of the neutral landscape
5.4. Local search exploiting neutrality to solve the flow shop problem
5.4.1. Neutrality-based iterated local search
5.4.2. NILS on the flow shop problem
5.5. Conclusion
5.6. Bibliography

Chapter 6. Evolutionary Metaheuristic Based on Genetic Algorithm: Application to Hybrid Flow Shop Problem with Availability Constraints
Nadia CHAABEN, Racem MELLOULI and Faouzi MASMOUDI
6.1. Introduction
6.2. Overview of the literature
6.3. Overview of the problem and notations used
6.4. Mathematical formulations
6.4.1. First formulation (MILP1)
6.4.2. Second formulation (MILP2)
6.4.3. Third formulation (MILP3)
6.5. A genetic algorithm: model and methodology
6.5.1. Coding used for our algorithm
6.5.2. Generating the initial population
6.5.3. Selection operator
6.5.4. Crossover operator
6.5.5. Mutation operator
6.5.6. Insertion operator
6.5.7. Evaluation function: fitness
6.5.8. Stop criterion
6.6. Verification and validation of the genetic algorithm
6.6.1. Description of benchmarks
6.6.2. Tests and results
6.7. Conclusion 148
6.8. Bibliography 148

Chapter 7. Models and Methods in Graph Coloration for Various Production Problems 153
Nicolas ZUFFEREY

7.1. Introduction 153
7.2. Minimizing the makespan 155
7.2.1. Tabu algorithm 155
7.2.2. Hybrid genetic algorithm 157
7.2.3. Methods prior to GH 158
7.2.4. Extensions 159
7.3. Maximizing the number of completed tasks 160
7.3.1. Tabu algorithm 161
7.3.2. The ant colony algorithm 162
7.3.3. Extension of the problem 164
7.4. Precedence constraints 165
7.4.1. Tabu algorithm 168
7.4.2. Variable neighborhood search method 169
7.5. Incompatibility costs 171
7.5.1. Tabu algorithm 173
7.5.2. Adaptive memory method 175
7.5.3. Variations of the problem 177
7.6. Conclusion 178
7.7. Bibliography 179

Chapter 8. Mathematical Programming and Heuristics for Scheduling Problems with Early and Tardy Penalties 183
Mustapha RATLI, Rachid BENMANSOUR, Rita MACEDO, Saïd HANAFI, Christophe WILBAUT

8.1. Introduction 183
8.2. Properties and particular cases 185
8.3. Mathematical models 188
8.3.1. Linear models with precedence variables 188
8.3.2. Linear models with position variables 192
8.3.3. Linear models with time-indexed variables 194
8.3.4. Network flow models 197
8.3.5. Quadratic models 197
8.3.6. A comparative study 199
8.4. Heuristics 203
8.4.1. Properties 207
8.4.2. Evaluation 209
8.5. Metaheuristics 211
8.6. Conclusion 217
8.7. Acknowledgments 218
8.8. Bibliography 218

Chapter 9. Metaheuristics for Biobjective Flow Shop Scheduling 225
Matthieu BASSEUR and Arnaud LIÉFOOGHE

9.1. Introduction 225
9.2. Metaheuristics for multiobjective combinatorial optimization 226
9.2.1. Main concepts 227
9.2.2. Some methods 229
9.2.3. Performance analysis 232
9.2.4. Software and implementation 237
9.3. Multiobjective flow shop scheduling problems 238
9.3.1. Flow shop problems 239
9.3.2. Permutation flow shop with due dates 240
9.3.3. Different objective functions 241
9.3.4. Sets of data 241
9.3.5. Analysis of correlations between objectives functions 242
9.4. Application to the biobjective flow shop 243
9.4.1. Model 244
9.4.2. Solution methods 246
9.4.3. Experimental analysis 246
9.5. Conclusion 249
9.6. Bibliography 250

Chapter 10. Pareto Solution Strategies for the Industrial Car Sequencing Problem 253
Caroline GAGNÉ, Arnaud ZINFLOU and Marc GRAVEL

10.1. Introduction 253
10.2. Industrial car sequencing problem 255
10.3. Pareto strategies for solving the CSP 260
10.3.1. PMSMO 260
10.3.2. GISMOO 264

10.4. Numerical experiments 268
10.4.1. Test sets 269
10.4.2. Performance metrics 270

10.5. Results and discussion 271

10.6. Conclusion 279

10.7. Bibliography 280

Chapter 11. Multi-Objective Metaheuristics for the Joint Scheduling of Production and Maintenance 283
Ali BERRICHI and Farouk YALAOUI

11.1. Introduction 283
11.2. State of the art on the joint problem 285
11.3. Integrated modeling of the joint problem 287
11.4. Concepts of multi-objective optimization 291
11.5. The particle swarm optimization method 292
11.6. Implementation of MOPSO algorithms 294
11.6.1. Representation and construction of the solutions 294
11.6.2. Solution Evaluation 295
11.6.3. The proposed MOPSO algorithms 298
11.6.4. Updating the velocities and positions 299
11.6.5. Hybridization with local searches 300
11.7. Experimental results 302
11.7.1. Choice of test problems and configurations 302
11.7.2. Experiments and analysis of the results 303

11.8. Conclusion 310

11.9. Bibliography 311

Chapter 12. Optimization via a Genetic Algorithm Parametrizing the AHP Method for Multicriteria Workshop Scheduling 315
Fouzia OUNNAR, Patrick PUJO and Afef DENGUIR

12.1. Introduction 315

12.2. Methods for solving multicriteria scheduling 316
12.2.1. Optimization methods 316
12.2.2. Multicriteria decision aid methods 318
12.2.3. Choice of the multicriteria decision aid method 319
12.3. Presentation of the AHP method 320
12.3.1. Phase 1: configuration 320
12.3.2. Phase 2: exploitation 321
12.4. Evaluation of metaheuristics for the configuration of AHP 322
12.4.1. Local search methods 323
12.4.2. Population-based methods 324
12.4.3. Advanced metaheuristics 326
12.5. Choice of metaheuristic 326
12.5.1. Justification of the choice of genetic algorithms 326
12.5.2. Genetic algorithms 328
12.6. AHP optimization by a genetic algorithm 330
12.6.1. Phase 0: configuration of the structure of the problem 331
12.6.2. Phase 1: preparation for automatic configuration 332
12.6.3. Phase 2: automatic configuration 334
12.6.4. Phase 3: preparation of the exploitation phase 335
12.7. Evaluation of G-AHP 336
12.7.1. Analysis of the behavior of G-AHP 336
12.7.2. Analysis of the results obtained by G-AHP 342
12.8. Conclusions 343
12.9. Bibliography 344

Chapter 13. A Multicriteria Genetic Algorithm for the Resource-constrained Task Scheduling Problem 349
Olfa DRIDI, Saoussen KRICHEN and Adel GUITOUNI

13.1. Introduction 349
13.2. Description and formulation of the problem 350
13.3. Literature review 353
13.3.1. Exact methods 354
13.3.2. Approximate methods 355
13.4. A multicriteria genetic algorithm for the MMSAP 356
13.4.1. Encoding variables 357
13.4.2. Genetic operators 358
Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

- **Product Name:** Metaheuristics for Production Scheduling
- **Web Address:** http://www.researchandmarkets.com/reports/2500204/
- **Office Code:** SC231YNQ

Product Format
Please select the product format and quantity you require:

<table>
<thead>
<tr>
<th>Quantity</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard Copy (Hard Back):</td>
<td>USD 204 + USD 28 Shipping/Handling</td>
</tr>
</tbody>
</table>

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in **BLOCK CAPITALS**

<table>
<thead>
<tr>
<th>Title:</th>
<th>Mr</th>
<th>Mrs</th>
<th>Dr</th>
<th>Miss</th>
<th>Ms</th>
<th>Prof</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Name:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Last Name:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Email Address:</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Job Title:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organisation:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Address:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>City:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Postal / Zip Code:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phone Number:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fax Number:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:

<table>
<thead>
<tr>
<th>Account number</th>
<th>833 130 83</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sort code</td>
<td>98-53-30</td>
</tr>
<tr>
<td>Swift code</td>
<td>ULSBIE2D</td>
</tr>
<tr>
<td>IBAN number</td>
<td>IE78ULSB98533083313083</td>
</tr>
<tr>
<td>Bank Address</td>
<td>Ulster Bank, 27-35 Main Street, Blackrock, Co. Dublin, Ireland.</td>
</tr>
</tbody>
</table>

If you have a Marketing Code please enter it below:

Marketing Code: ________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World