Numerical Methods in Contact Mechanics

Description:
Computational contact mechanics is a broad topic which brings together algorithmic, geometrical, optimization and numerical aspects for a robust, fast and accurate treatment of contact problems. This book covers all the basic ingredients of contact and computational contact mechanics: from efficient contact detection algorithms and classical optimization methods to new developments in contact kinematics and resolution schemes for both sequential and parallel computer architectures. The book is self-contained and intended for people working on the implementation and improvement of contact algorithms in a finite element software.

Using a new tensor algebra, the authors introduce some original notions in contact kinematics and extend the classical formulation of contact elements. Some classical and new resolution methods for contact problems and associated ready-to-implement expressions are provided.

Contents:
1. Introduction to Computational Contact.
2. Geometry in Contact Mechanics.
3. Contact Detection.
4. Formulation of Contact Problems.

About the Authors

Vladislav A. Yastrebov is a postdoctoral-fellow in Computational Solid Mechanics at MINES ParisTech in France. His work in computational contact mechanics was recognized by the CSMA award and by the Prix Paul Caseau of the French Academy of Technology and Electricité de France.

Contents:
Foreword xi
Preface xiii
Notations xv
Chapter 1. Introduction to Computational Contact 1
 1.1. Historical remark 5
 1.1.1. The augmented Lagrangian method 7
 1.2. Basics of the numerical treatment of contact problems 9
 1.2.1. Contact detection 9
 1.2.2. Contact discretization 10
 1.2.3. Contact resolution 13
Chapter 2. Geometry in Contact Mechanics 15
 2.1. Introduction 15
 2.2. Interaction between contacting surfaces 19
 2.2.1. Some notations 19
2.2.2. Normal gap 21
2.2.3. Closest point on a surface 26
2.2.4. Closest point on a curve 28
2.2.5. Shadow-projection method 32
2.2.6. Tangential relative sliding 35
2.3. Variations of geometrical quantities 38
2.3.1. First-order variations 38
2.3.2. Second-order variations 40
2.4. Numerical validation 42
2.5. Discretized geometry 44
2.5.1. Shape functions and finite elements 44
2.5.2. Geometry of contact elements 45
2.6. Enrichment of contact geometry 51
2.6.1. Derivation of enriched quantities 53
2.6.2. Variations of geometrical quantities 58
2.6.3. Example of enrichment 65
2.6.4. Concluding remarks 68
Chapter 3. Contact Detection 71
3.1. Introduction 71
3.2. All-to-all detection 76
3.2.1. Preliminary phase 76
3.2.2. Detection phase 79
3.3. Bucket sort detection 84
3.3.1. Preliminary phase 86
3.3.2. Numerical tests 87
3.3.3. Detection phase 90
3.3.4. Multi-face contact elements 91
3.3.5. Improvements 92
3.4. Case of unknown master slave 93
3.5. Parallel contact detection 97
3.5.1. General presentation 97
3.5.2. Single detection, multiple resolution approach 97
3.5.3. Multiple detection, multiple resolution approach 99
3.5.4. Scalability test 100
3.6. Conclusion 101

Chapter 4. Formulation of Contact Problems 103
4.1. Contact of a deformable solid with a rigid plane 103
4.1.1. Unilateral contact with a rigid plane 104
4.1.2. Interpretation of contact conditions 109
4.1.3. Friction 111
4.1.4. An analogy with plastic flow 117
4.1.5. Interpretation of frictional conditions 121
4.2. Contact of a deformable solid with an arbitrary rigid surface 124
4.2.1. Non-penetration condition 125
4.2.2. Hertz, Signorini, Moreau’s contact conditions 129
4.2.3. Interpretation of contact conditions 130
4.2.4. Frictional conditions and their interpretation 132
4.2.5. Example: rheology of a one-dimensional frictional system on a sinusoidal rigid substrate 133
4.3. Contact between deformable solids 135
4.3.1. General formulation and variational inequality 135
4.3.2. Remarks on Coulomb’s frictional law 142
4.4. Variational equality and resolution methods 144
4.5. Penalty method 145
4.5.1. Frictionless case 145
4.5.2. Example 148
4.5.3. Nonlinear penalty functions 151
4.5.4. Frictional case 153
4.6. Method of Lagrange multipliers 157
4.6.1. Frictionless case 158
4.6.2. Frictional case 161
4.6.3. Example 164
4.7. Augmented Lagrangian Method 170
4.7.1. Introduction 170
Chapter 6. Numerical Examples 265
6.1. Two dimensional problems 265
6.1.1. Indentation by a rigid flat punch 265
6.1.2. Elastic disk embedded in an elastic bored plane 269
6.1.3. Indentation of an elastic rectangle by a circular indenter 272
6.1.4. Axisymmetric deep cup drawing 274
6.1.5. Shallow ironing 278
6.1.6. Axisymmetric post-buckling of a thin-walled cylinder 279
6.2. Three-dimensional problems 286
6.2.1. Accordion post-buckling folding of a thin-walled tube 286
6.2.2. Hydrostatic extrusion of a square plate through a circular hole 288
6.2.3. Frictional sliding of a cube on a rigid plane 292
Appendix 1. Vectors, Tensors and s-Structures 297
A1.1. Fundamentals 298
A1.2. Vector space basis 303
A1.2.1. Transformation matrices, covariant and contravariant objects 306
A1.2.2. Gradient operator or Hamilton s operator 308
A1.3. Sub-basis, vector function of v-scalar argument 311
A1.4. Tensors 314
A1.5. Tensor as a linear operator on vector space 322
A1.6. S-structures 325
A1.6.1. Formal definition, notations and types 327
A1.6.2. Simple operations 331
A1.6.3. Invariant s-structures 333
A1.6.4. Scalar products of v-vectors 336
A1.6.5. Inverse v-vector 341
A1.6.6. Isomorphism of s-space and tensor space 343
A1.7. Reduced form of s-structures 349
Appendix 2. Variations of Geometrical Quantities 353
A2.1. First-order variations 353
A2.1.1. Normal projection case 354
A2.1.2. Shadow–projection case: infinitely remote emitter 356
A2.1.3. Shadow–projection case: close emitter 361
A2.2. Second-order variations 362
A2.2.1. Normal projection case 362
A2.2.2. Shadow–projection case: infinitely remote emitter 369
A2.2.3. Shadow–projection case: close emitter 370
Bibliography 375
Index 387

Ordering: Order Online - http://www.researchandmarkets.com/reports/2510320/
Order by Fax - using the form below
Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

Product Name: Numerical Methods in Contact Mechanics
Web Address: http://www.researchandmarkets.com/reports/2510320/
Office Code: SCDKWDKK

Product Format
Please select the product format and quantity you require:

Quantity

Hard Copy (Hard Back):
USD 147 + USD 29 Shipping/Handling

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title: Mr [] Mrs [] Dr [] Miss [] Ms [] Prof []
First Name: ___________________________ Last Name: ___________________________
Email Address: ___________________________
Job Title: ___________________________
Organisation: ___________________________
Address: ___________________________
City: ___________________________
Postal / Zip Code: ___________________________
Country: ___________________________
Phone Number: ___________________________
Fax Number: ___________________________

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:

<table>
<thead>
<tr>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Account number</td>
<td>833 130 83</td>
</tr>
<tr>
<td>Sort code</td>
<td>98-53-30</td>
</tr>
<tr>
<td>Swift code</td>
<td>ULSBIE2D</td>
</tr>
<tr>
<td>IBAN number</td>
<td>IE78ULSB98533083313083</td>
</tr>
<tr>
<td>Bank Address</td>
<td>Ulster Bank, 27-35 Main Street, Blackrock, Co. Dublin, Ireland.</td>
</tr>
</tbody>
</table>

If you have a Marketing Code please enter it below:

Marketing Code: __________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:

(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World