Aircraft Flight Dynamics and Control. Aerospace Series

Description: Aircraft Flight Dynamics and Control addresses airplane flight dynamics and control in a largely classical manner, but with references to modern treatment throughout. Classical feedback control methods are illustrated with relevant examples, and current trends in control are presented by introductions to dynamic inversion and control allocation.

This book covers the physical and mathematical fundamentals of aircraft flight dynamics as well as more advanced theory enabling a better insight into nonlinear dynamics. This leads to a useful introduction to automatic flight control and stability augmentation systems with discussion of the theory behind their design, and the limitations of the systems. The author provides a rigorous development of theory and derivations and illustrates the equations of motion in both scalar and matrix notation.

Key features:
- Classical development and modern treatment of flight dynamics and control
- Detailed and rigorous exposition and examples, with illustrations
- Presentation of important trends in modern flight control systems
- Accessible introduction to control allocation based on the author’s seminal work in the field
- Development of sensitivity analysis to determine the influential states in an airplane’s response modes
- End of chapter problems with solutions available on an accompanying website

Written by an author with experience as an engineering test pilot as well as a university professor, Aircraft Flight Dynamics and Control provides the reader with a systematic development of the insights and tools necessary for further work in related fields of flight dynamics and control. It is an ideal course textbook and is also a valuable reference for many of the necessary basic formulations of the math and science underlying flight dynamics and control.

Contents:
Series Preface xiii
Glossary xv
1 Introduction 1
1.1 Background 1
1.2 Overview 2
1.3 Customs and Conventions 6
2 Coordinate Systems 7
2.1 Background 7
2.2 The Coordinate Systems 7
2.2.1 The inertial reference frame, FI 7
2.2.2 The earth–centered reference frame, FEC 8
2.2.3 The earth–fixed reference frame, FE 8
2.2.4 The local–horizontal reference frame, FH 8
2.2.5 Body–fixed reference frames, FB 10
7.1 General 75
7.2 Body–Axis Equations 75
7.2.1 Body–axis force equations 75
7.2.2 Body–axis moment equations 76
7.2.3 Body–axis orientation equations (kinematic equations) 77
7.2.4 Body–axis navigation equations 77
7.3 Wind–Axis Equations 78
7.3.1 Wind–axis force equations 78
7.3.2 Wind–axis orientation equations (kinematic equations) 80
7.3.3 Wind–axis navigation equations 81
7.4 Steady–State Solutions 81
7.4.1 General 81
7.4.2 Special cases 83
7.4.3 The trim problem 88
8 Linearization 93
8.1 General 93
8.2 Taylor Series 94
8.3 Nonlinear Ordinary Differential Equations 95
8.4 Systems of Equations 95
8.5 Examples 97
8.5.1 General 97
8.5.2 A kinematic equation 99
8.5.3 A moment equation 100
8.5.4 A force equation 103
8.6 Customs and Conventions 105
8.6.1 Omission of 105
8.6.2 Dimensional derivatives 105
8.6.3 Added mass 105
8.7 The Linear Equations 106
8.7.1 Linear equations 106
8.7.2 Matrix forms of the linear equations 108
9 Solutions to the Linear Equations 113
 9.1 Scalar Equations 113
 9.2 Matrix Equations 114
 9.3 Initial Condition Response 115
 9.3.1 Modal analysis 115
 9.4 Mode Sensitivity and Approximations 120
 9.4.1 Mode sensitivity 120
 9.4.2 Approximations 123
 9.5 Forced Response 124
 9.5.1 Transfer functions 124
 9.5.2 Steady-state response 125
10 Aircraft Flight Dynamics 127
 10.1 Example: Longitudinal Dynamics 127
 10.1.1 System matrices 127
 10.1.2 State transition matrix and eigenvalues 127
 10.1.3 Eigenvector analysis 129
 10.1.4 Longitudinal mode sensitivity and approximations 132
 10.1.5 Forced response 137
 10.2 Example: Lateral Directional Dynamics 140
 10.2.1 System matrices 140
 10.2.2 State transition matrix and eigenvalues 140
 10.2.3 Eigenvector analysis 142
 10.2.4 Lateral directional mode sensitivity and approximations 144
 10.2.5 Forced response 148
11 Flying Qualities 151
 11.1 General 151
 11.1.1 Method 152
 11.1.2 Specifications and standards 155
 11.2 MIL-F-8785C Requirements 156
 11.2.1 General 156
 11.2.2 Longitudinal flying qualities 157
 11.2.3 Lateral directional flying qualities 158
B.4 Non–dimensionalization of the Z–Force Equation 260

C Derivation of Euler Parameters 263

D Fedeeva's Algorithm 269

Reference 272

E MATLAB Commands Used in the Text 273

E.1 Using MATLAB 273

E.2 Eigenvalues and Eigenvectors 274

E.3 State–Space Representation 274

E.4 Transfer Function Representation 275

E.5 Root Locus 277

E.6 MATLAB® Functions (m–files) 277

E.6.1 Example aircraft 278

E.6.2 Mode sensitivity matrix 278

E.6.3 Cut–and–try root locus gains 278

E.7 Miscellaneous Applications and Notes 280

E.7.1 Matrices 280

E.7.2 Commands used to create Figures 10.2 and 10.3 281

Index 283

Order by Fax - using the form below

Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

Product Name:	Aircraft Flight Dynamics and Control. Aerospace Series
Web Address:	http://www.researchandmarkets.com/reports/2542495/
Office Code:	SCPLYNXD

Product Format
Please select the product format and quantity you require:

Quantity

- Hard Copy (Hard Back): USD 109 + USD 28 Shipping/Handling

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in BLOCK CAPITALS

<table>
<thead>
<tr>
<th>Title:</th>
<th>Mr</th>
<th>Mrs</th>
<th>Dr</th>
<th>Miss</th>
<th>Ms</th>
<th>Prof</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Name:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Last Name:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Email Address: *</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Job Title:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organisation:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Address:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>City:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Postal / Zip Code:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phone Number:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fax Number:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: _______________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World