Optimal Modified Continuous Galerkin CFD

Description:
Covers the theory and applications of using weak form theory in incompressible fluid-thermal sciences.

Giving you a solid foundation on the Galerkin finite-element method (FEM), this book promotes the use of optimal modified continuous Galerkin weak form theory to generate discrete approximate solutions to incompressible-thermal Navier-Stokes equations. The book covers the topic comprehensively by introducing formulations, theory and implementation of FEM and various flow formulations.

The author first introduces concepts, terminology and methodology related to the topic before covering topics including aerodynamics; the Navier-Stokes Equations; vector field theory implementations and large eddy simulation formulations.

- Introduces and addresses many different flow models (Navier-Stokes, full-potential, potential, compressible/incompressible) from a unified perspective
- Focuses on Galerkin methods for CFD beneficial for engineering graduate students and engineering professionals
- Accompanied by a website with sample applications of the algorithms and example problems and solutions

This approach is useful for graduate students in various engineering fields and as well as professional engineers.

Contents:
Preface xiii
About the Author xvii
Notations xix
1 Introduction 1
 1.1 About This Book 1
 1.2 The Navier Stokes Conservation Principles System 2
 1.3 Navier Stokes PDE System Manipulations 5
 1.4 Weak Form Overview 7
 1.5 A Brief History of Finite Element CFD 9
 1.6 A Brief Summary 11
References 12
2 Concepts, terminology, methodology 15
 2.1 Overview 15
 2.2 Steady DE Weak Form Completion 16
 2.3 Steady DE GWSN Discrete FE Implementation 19
 2.4 PDE Solutions, Classical Concepts 27
 2.5 The Sturm Liouville Equation, Orthogonality, Completeness 30
2.6 Classical Variational Calculus 33
2.7 Variational Calculus, Weak Form Duality 36
2.8 Quadratic Forms, Norms, Error Estimation 38
2.9 Theory Illustrations for Non-Smooth, Nonlinear Data 40
2.10 Matrix Algebra, Notation 44
2.11 Equation Solving, Linear Algebra 46
2.12 Krylov Sparse Matrix Solver Methodology 53
2.13 Summary 54
Exercises 54
References 56

3 Aerodynamics I: Potential flow, GWSh theory exposition, transonic flow mPDE shock capturing 59
3.1 Aerodynamics, Weak Interaction 59
3.2 Navier–Stokes Manipulations for Aerodynamics 60
3.3 Steady Potential Flow GWS 62
3.4 Accuracy, Convergence, Mathematical Preliminaries 66
3.5 Accuracy, Galerkin Weak Form Optimality 68
3.6 Accuracy, GWSh Error Bound 71
3.7 Accuracy, GWSh Asymptotic Convergence 73
3.8 GWSh Natural Coordinate FE Basis Matrices 76
3.9 GWSh Tensor Product FE Basis Matrices 82
3.10 GWSh Comparison with Laplacian FD and FV Stencils 87
3.11 Post-Processing Pressure Distributions 90
3.12 Transonic Potential Flow, Shock Capturing 92
3.13 Summary 96
Exercises 98
References 99

4 Aerodynamics II: boundary layers, turbulence closure modeling, parabolic Navier–Stokes 101
4.1 Aerodynamics, Weak Interaction Reprise 101
4.2 Navier–Stokes PDE System Reynolds Ordered 102
4.3 GWSh, n= 2 Laminar–Thermal Boundary Layer 104
4.4 GWSh + TS BL Matrix Iteration Algorithm 108
4.5 Accuracy, Convergence, Optimal Mesh Solutions 111
4.6 GWSh + TS Solution Optimality, Data Influence 115
4.7 Time Averaged NS, Turbulent BL Formulation 116
4.8 Turbulent BL GWSh+ TS, Accuracy, Convergence 120
4.9 GWSh+ TS BL Algorithm, TKE Closure Models 123
4.10 The Parabolic Navier Stokes PDE System 129
4.11 GWSh + TS Algorithm for PNS PDE System 134
4.12 GWSh + TS k=1 NC Basis PNS Algorithm 137
4.13 Weak Interaction PNS Algorithm Validation 141
4.14 Square Duct PNS Algorithm Validation 147
4.15 Summary 148
Exercises 155
References 157

5 The Navier Stokes Equations: theoretical fundamentals; constraint, spectral analyses, mPDE theory, optimal Galerkin weak forms 159
5.1 The Incompressible Navier Stokes PDE System 159
5.2 Continuity Constraint, Exact Enforcement 160
5.3 Continuity Constraint, Inexact Enforcement 164
5.4 The CCM Pressure Projection Algorithm 166
5.5 Convective Transport, Phase Velocity 168
5.6 Convection–Diffusion, Phase Speed Characterization 170
5.7 Theory for Optimal mGWSh+ TS Phase Accuracy 177
5.8 Optimally Phase Accurate mGWSh + TS in n Dimensions 185
5.9 Theory for Optimal mGWSh Asymptotic Convergence 193
5.10 The Optimal mGWSh TS k 1 Basis NS Algorithm 201
5.11 Summary 203
Exercises 206
References 208

6 Vector Field Theory Implementations: vorticity–streamfunction, vorticity–velocity formulations 211
6.1 Vector Field Theory NS PDE Manipulations 211
6.2 Vorticity–Streamfunction PDE System, n= 2 213
6.3 Vorticity–Streamfunction mGWSh Algorithm 214
Ordering:

Order Online - http://www.researchandmarkets.com/reports/2561581/

Order by Fax - using the form below

Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

<table>
<thead>
<tr>
<th>Product Name:</th>
<th>Optimal Modified Continuous Galerkin CFD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Web Address:</td>
<td>http://www.researchandmarkets.com/reports/2561581/</td>
</tr>
<tr>
<td>Office Code:</td>
<td>SCDKJ473</td>
</tr>
</tbody>
</table>

Product Format
Please select the product format and quantity you require:

Quantity

| Hard Copy (Hard Back): | USD 156 + USD 29 Shipping/Handling |

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in **BLOCK CAPITALS**

<table>
<thead>
<tr>
<th>Title:</th>
<th>Mr □ Mrs □ Dr □ Miss □ Ms □ Prof □</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Name:</td>
<td>___________________________</td>
</tr>
<tr>
<td>Email Address: *</td>
<td>___________________________</td>
</tr>
<tr>
<td>Job Title:</td>
<td>___________________________</td>
</tr>
<tr>
<td>Organisation:</td>
<td>___________________________</td>
</tr>
<tr>
<td>Address:</td>
<td>___________________________</td>
</tr>
<tr>
<td>City:</td>
<td>___________________________</td>
</tr>
<tr>
<td>Postal / Zip Code:</td>
<td>___________________________</td>
</tr>
<tr>
<td>Country:</td>
<td>___________________________</td>
</tr>
<tr>
<td>Phone Number:</td>
<td>___________________________</td>
</tr>
<tr>
<td>Fax Number:</td>
<td>___________________________</td>
</tr>
</tbody>
</table>

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: _________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World