LTE-Advanced DRX Mechanism for Power Saving

Description: Resource allocation and power optimization is a new challenge in multimedia services in cellular communication systems. To provide a better end-user experience, the fourth generation (4G) standard Long Term Evolution/Long Term Evolution-Advanced (LTE/LTE-Advanced) has been developed for high-bandwidth mobile access to accommodate today's data-heavy applications. LTE/LTE-Advanced has adopted discontinuous reception (DRX) to extend the user equipment's battery lifetime, thereby further supporting various services and large amounts of data transmissions.

By introducing the basics of mathematical analysis and performance evaluation of power-saving mechanisms in 3rd generation partnership project (3GPP) LTE and LTE-Advanced networks, the authors of this book aim to describe novel algorithms which could have better performance capabilities than previous methods.

Chapter 1 gives the basic theory description of the 3GPP LTE network and 3GPP DRX power saving mechanism, empirical measurements of LTE network traffic and an overview of the basic LTE DRX model in the field of power saving techniques. Chapter 2 provides steps for deriving a 2-state analytical model up to a 4-state DRX model. The third and final chapter summarizes alternative methods for the implementation of LTE DRX.

Contents

1. Basic Theory
3. Other Approaches for LTE Power Saving

About the Authors

Scott A. Fowler is Associate Professor at Linköping University, Sweden, working with the Mobile Telecommunication (MT) group. He has served on several IEEE conferences/workshops as TPC to Chair, including Special Interest Groups coordinator for IEEE Communications Software (CommSoft) Technical Committee since 2012. His research interests include Quality of Service (QoS) support over heterogeneous networks, computer networks (wired, wireless), energy management, mobile computing, pervasive/ubiquitous, performance evaluation of networks and security.

Abdelhamid Mellouk is Full Professor at the University of Paris-Est Créteil VdM (UPEC, ex. Paris 12), Networks & Telecommunications (N&T) Department (IUT C/V) and LiSSi Laboratory in France. He is a founder of the Network Control Research activity with extensive international academic and industrial collaborations. His general area of research is in adaptive real-time control for high-speed new generation dynamic wired/wireless networking in order to maintain acceptable Quality of Service/Experience for added-value services.

Naomi Yamada is a research associate at Linköping University, Sweden.
1.3. LTE Traffic measurements 11
 1.3.1. Testing environment 12
 1.3.2. VoIP preliminary capacity 13
 1.3.3. Video conversation preliminary capacity 14
 1.3.4. Post video and live video preliminary capacity 15
 1.3.5. Summary on the LTE Traffic measurements 18
1.4. User equipment power saving in LTE 18
 1.4.1. DRX cycle 18
1.5. Models for LTE Power Saving 24
 1.5.1. 3GPP power consumption model 25
 1.5.2. Characteristics of NokiaTM power consumption model 26
1.6. Conclusion 29
1.7. Bibliography 30

CHAPTER 2. ANALYTICAL SEMI-MARKOV POWER-SAVING MODELS 33
2.1. Introduction of bursty packet data traffic 33
2.2. Designing a simple Two-state DRX model using semi-Markov 36
 2.2.1. State 1 to state 1 and state 1 to state 2 38
 2.2.2. Transition probability matrix 39
 2.2.3. How we obtain equation [2.4] 39
 2.2.4. Holding states 40
 2.2.5. State H1 40
 2.2.6. Sleep states H2 42
 2.2.7. DRX cycles in basic 3GPP LTE 43
 2.2.8. Wake-up delay 43
 2.2.9. Power-saving factor (PS) 44
 2.2.10. Numerical results 44
2.3. Three-state fixed model 47
 2.3.1. State 1 to state 1 and state 1 to state 2 49
 2.3.2. State 2 to state 1 and state 2 to state 3 49
 2.3.3. Transition probability matrix 50
 2.3.4. State H1 51
 2.3.5. Sleep states H2 and H3 51
2.3.6. Power-saving factor (PS) 52

2.3.7. Numerical results 54

2.3.8. Summary of the Three-state model 59

2.4. Four-state fixed model 60

2.4.1. State 1 to state 1, state 1 to state 2 and state 1 to state 3 61

2.4.2. State 2 to state 1, state 2 to state 2 and state 2 to state 3 61

2.4.3. State 3 to state 1, state 3 to state 2 and state 3 to state 4 62

2.4.4. State 4 to state 1 and state 4 to state 2 63

2.4.5. Transition probability matrix 63

2.4.6. Sleep states H3 and H4 65

2.4.7. Power-saving factor (PS) 66

2.4.8. Numerical results 68

2.5. Conclusion 69

2.6. Bibliography 69

CHAPTER 3. OTHER APPROACHES FOR LTE POWER SAVING 71

3.1. Scheduling schemes 71

3.2. DRX power-saving method 74

3.3. Analytical work 78

3.4. Analytical Adjustable-DRX Three-state model 79

3.4.1. Adjustable DRX timer state for light sleep 79

3.4.2. State 2 to state 1 and state 2 to state 3 80

3.4.3. Transition probability matrix 81

3.4.4. Adjustable DRX cycles in 3GPP LTE 82

3.4.5. Sleep states H2 and H3 83

3.4.6. Power-saving factor (PS) 84

3.4.7. Numerical results 86

3.5. Conclusion 92

3.6. Bibliography 92

ACRONYMS AND NOTATIONS 95

INDEX 101
Ordering:

Order Online - http://www.researchandmarkets.com/reports/2586579/

Order by Fax - using the form below

Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

Product Name: LTE-Advanced DRX Mechanism for Power Saving
Web Address: http://www.researchandmarkets.com/reports/2586579/
Office Code: SCD4LQOD

Product Format
Please select the product format and quantity you require:

<table>
<thead>
<tr>
<th>Quantity</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard Copy (Hard Back):</td>
<td>USD 70 + USD 28 Shipping/Handling</td>
</tr>
</tbody>
</table>

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title: Mr □ Mrs □ Dr □ Miss □ Ms □ Prof □
First Name: ___________________________ Last Name: ___________________________
Email Address: * ___________________________
Job Title: ___________________________
Organisation: ___________________________
Address: ___________________________
City: ___________________________
Postal / Zip Code: ___________________________
Country: ___________________________
Phone Number: ___________________________
Fax Number: ___________________________

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: ____________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp