Matrix Algebra for Linear Models

Description: A self-contained introduction to matrix analysis theory and applications in the field of statistics

Comprehensive in scope, Matrix Algebra for Linear Models offers a succinct summary of matrix theory and its related applications to statistics, especially linear models. The book provides a unified presentation of the mathematical properties and statistical applications of matrices in order to define and manipulate data.

Written for theoretical and applied statisticians, the book utilizes multiple numerical examples to illustrate key ideas, methods, and techniques crucial to understanding matrix algebra's application in linear models. Matrix Algebra for Linear Models expertly balances concepts and methods allowing for a side-by-side presentation of matrix theory and its linear model applications. Including concise summaries on each topic, the book also features:

- Methods of deriving results from the properties of eigenvalues and the singular value decomposition
- Solutions to matrix optimization problems for obtaining more efficient biased estimators for parameters in linear regression models
- A section on the generalized singular value decomposition
- Multiple chapter exercises with selected answers to enhance understanding of the presented material

Matrix Algebra for Linear Models is an ideal textbook for advanced undergraduate and graduate-level courses on statistics, matrices, and linear algebra. The book is also an excellent reference for statisticians, engineers, economists, and readers interested in the linear statistical model.

Contents:

Preface xiii
Acknowledgments xv
Part I Basic Ideas about Matrices and Systems of Linear Equations 1
Section 1 What Matrices are and Some Basic Operations with Them 3
1.1 Introduction, 3
1.2 What are Matrices and Why are they Interesting to a Statistician? 3
1.3 Matrix Notation, Addition, and Multiplication, 6
1.4 Summary, 10
Exercises, 10
Section 2 Determinants and Solving a System of Equations 14
2.1 Introduction, 14
2.2 Definition of and Formulae for Expanding Determinants, 14
2.3 Some Computational Tricks for the Evaluation of Determinants, 16
2.4 Solution to Linear Equations Using Determinants, 18
2.5 Gauss Elimination, 22
2.6 Summary, 27
Section 3 The Inverse of a Matrix 30
3.1 Introduction, 30
3.2 The Adjoint Method of Finding the Inverse of a Matrix, 30
3.3 Using Elementary Row Operations, 31
3.4 Using the Matrix Inverse to Solve a System of Equations, 33
3.5 Partitioned Matrices and Their Inverses, 34
3.6 Finding the Least Square Estimator, 38
3.7 Summary, 44
Exercises, 44
Section 4 Special Matrices and Facts about Matrices that will be Used in the Sequel 47
4.1 Introduction, 47
4.2 Matrices of the Form $aI_n + bJ_n$, 47
4.3 Orthogonal Matrices, 49
4.4 Direct Product of Matrices, 52
4.5 An Important Property of Determinants, 53
4.6 The Trace of a Matrix, 56
4.7 Matrix Differentiation, 57
4.8 The Least Square Estimator Again, 62
4.9 Summary, 62
Exercises, 63
Section 5 Vector Spaces 66
5.1 Introduction, 66
5.2 What is a Vector Space?, 66
5.3 The Dimension of a Vector Space, 68
5.4 Inner Product Spaces, 70
5.5 Linear Transformations, 73
5.6 Summary, 76
Exercises, 76
Section 6 The Rank of a Matrix and Solutions to Systems of Equations 79
6.1 Introduction, 79
6.2 The Rank of a Matrix, 79
6.3 Solving Systems of Equations with Coefficient Matrix of Less than Full Rank, 84

6.4 Summary, 87

Exercises, 87

Part II Eigenvalues, the Singular Value Decomposition, and Principal Components 91

Section 7 Finding the Eigenvalues of a Matrix 93

7.1 Introduction, 93

7.2 Eigenvalues and Eigenvectors of a Matrix, 93

7.3 Nonnegative Definite Matrices, 101

7.4 Summary, 104

Exercises, 105

Section 8 The Eigenvalues and Eigenvectors of Special Matrices 108

8.1 Introduction, 108

8.2 Orthogonal, Nonsingular, and Idempotent Matrices, 109

8.3 The Cayley–Hamilton Theorem, 112

8.4 The Relationship between the Trace, the Determinant, and the Eigenvalues of a Matrix, 114

8.5 The Eigenvalues and Eigenvectors of the Kronecker Product of Two Matrices, 116

8.6 The Eigenvalues and the Eigenvectors of a Matrix of the Form \(aI + bJ\), 117

8.7 The Loewner Ordering, 119

8.8 Summary, 121

Exercises, 122

Section 9 The Singular Value Decomposition (SVD) 124

9.1 Introduction, 124

9.2 The Existence of the SVD, 125

9.3 Uses and Examples of the SVD, 127

9.4 Summary, 134

Exercises, 134

Section 10 Applications of the Singular Value Decomposition 137

10.1 Introduction, 137

10.2 Reparameterization of a Non-full-Rank Model to a Full-Rank Model, 137

10.3 Principal Components, 141

10.4 The Multicollinearity Problem, 143
10.5 Summary, 144
Exercises, 145

Section 11 Relative Eigenvalues and Generalizations of the Singular Value Decomposition 146
11.1 Introduction, 146
11.2 Relative Eigenvalues and Eigenvectors, 146
11.3 Generalizations of the Singular Value Decomposition:
Overview, 151
11.4 The First Generalization, 152
11.5 The Second Generalization, 157
11.6 Summary, 160
Exercises, 160

Part III Generalized Inverses 163

Section 12 Basic Ideas about Generalized Inverses 165
12.1 Introduction, 165
12.2 What is a Generalized Inverse and How is One Obtained?, 165
12.3 The Moore–Penrose Inverse, 170
12.4 Summary, 173
Exercises, 173

Section 13 Characterizations of Generalized Inverses Using the Singular Value Decomposition 175
13.1 Introduction, 175
13.2 Characterization of the Moore–Penrose Inverse, 175
13.3 Generalized Inverses in Terms of the Moore–Penrose Inverse, 177
13.4 Summary, 185
Exercises, 186

Section 14 Least Square and Minimum Norm Generalized Inverses 188
14.1 Introduction, 188
14.2 Minimum Norm Generalized Inverses, 189
14.3 Least Square Generalized Inverses, 193
14.4 An Extension of Theorem 7.3 to Positive-Semi-definite Matrices, 196
14.5 Summary, 197
Exercises, 197

Section 15 More Representations of Generalized Inverses 200
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

<table>
<thead>
<tr>
<th>Product Name</th>
<th>Matrix Algebra for Linear Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>Web Address</td>
<td>http://www.researchandmarkets.com/reports/2638608/</td>
</tr>
<tr>
<td>Office Code</td>
<td>SCDKT4Y9</td>
</tr>
</tbody>
</table>

Product Format
Please select the product format and quantity you require:

| Quantity | Hard Copy (Hard Back): USD 112 + USD 29 Shipping/Handling |

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in BLOCK CAPITALS

<table>
<thead>
<tr>
<th>Title:</th>
<th>Mr</th>
<th>Mrs</th>
<th>Dr</th>
<th>Miss</th>
<th>Ms</th>
<th>Prof</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Name:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Email Address:*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Job Title:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organisation:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Address:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>City:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Postal / Zip Code:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phone Number:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fax Number:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:
Marketing Code: __________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World