
Description:
Power Generation For Vehicles From Heat, Light, Vibration, Motion And More

The electric vehicle industry - land, water and air - is rapidly rising to become a huge market of over $290 billion by 2024. Some run entirely on harvested energy as with solar lake boats. Others recycle energy as with regenerative braking of cars, buses and military vehicles harvesting kinetic energy. Others use different forms of harvesting either to charge the traction batteries or to drive autonomous devices as we progress to the wireless vehicle. In some cases, harvesting is making completely new forms of electric vehicle possible such as "glider" Autonomous Underwater Vehicles (AUVs) that stay at sea for years and surface to gain electricity from both wave power and sunshine whenever necessary. Indeed, multiple forms of energy harvesting on one vehicle is becoming much more common from cars to superyachts. This report is the first to provide technical and marketing analysis of the rapidly growing market for energy harvesting in electric vehicles - land, water and air - with forecasts.

This report gives a wealth of examples of energy harvesting in action on electric vehicles by land, water and air. It summarises trends in diagrams, tables and text to make it easy to compare essential information. Forecasts for adoption in 2014 and 2024 are backed by ten year forecasts for electric vehicle sales by type, 2014-2024 by category - number, unit value and market value. A critical explanation of all the technologies is given with the good and bad aspects and assessment of likely future progress. The work of a large number of suppliers and adopters is assessed.

ADDITIONAL BENEFITS

Free Electric Vehicle Encyclopedia when you purchase this report

Electric Vehicle experts IDTechEx have encapsulated over ten years of research and analysis into an easy to digest electric vehicle encyclopedia. All the technologies are covered and supported with over 100 tables and illustrations and over 200 acronyms and terms are explained. This encyclopedia is given as a free PDF download when you buy this report.

Analyst access

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

Contents:
1. EXECUTIVE SUMMARY AND CONCLUSIONS
 1.1. What is energy harvesting?
 1.2. Choices of harvesting
 1.3. Opportunities for energy harvesting in cars
 1.4. Market size of EV energy harvesting 2013-2024
 1.5. Largest sectors

2. INTRODUCTION
 2.1. Energy harvesting
 2.1.1. Textron Bell helicopter sensing
 2.1.2. Train brakes
 2.1.3. MEMS
 2.2. Electric vehicle
 2.3. Needs
 2.3.1. Range and cost
 2.3.2. Hybrid vs pure electric
 2.3.3. Biomimetics
 2.4. Options and examples
2.4.1. ETH, QinetiQ solar plane
2.4.2. Amerigon thermoelectrics for cars, etc
2.4.3. Military land vehicles
2.4.4. NASA on Mars- planetary exploration vehicles
2.5. Bluecar
2.6. Nissan Capacitor Hybrid truck, forklift
2.7. Toyota Prius
2.8. Multi-mode harvesting
 2.8.1. Alongside
 2.8.2. Smart skin
 2.8.3. EH in tire pressure monitoring
 2.8.4. Issues with TPMSs using batteries
 2.8.5. Energy harvesters for TPMS
2.9. Microhybrids

3. TECHNOLOGY TRENDS
3.1. Photovoltaic
 3.1.1. Flexible, conformal
 3.1.2. Technological options
 3.1.3. Principles of operation
 3.1.4. Options for flexible PV
 3.1.5. Many types of photovoltaics needed for harvesting
3.2. Limits of cSi and aSi technologies
3.3. Limits of CdTe
3.4. GaAs-Ge multilayers
3.5. DSSC
3.6. CIGS
3.7. Organic
3.8. Nanosilicon ink
3.9. Nantenna - diode PV
 3.9.1. Nanowire solar cells
 3.9.2. UV, visible, IR
3.10. Technology trends - electrodynamic
3.11. Vibration harvesting
3.12. Movement harvesting options
 3.12.1. Piezoelectric - conventional, ZnO and polymer
 3.12.2. Electrostatic
 3.12.3. Magnetostrictive
 3.12.4. Energy harvesting electronics
3.13. Electroactive polymers
3.14. Electrodynamic
 3.14.2. Regenerative braking
 3.14.3. Energy harvesting shock absorbers
 3.14.4. Regenerative soaring
3.15. Thermoelectrics
 3.15.1. Thermoelectric construction
 3.15.2. Advantages of thermoelectrics
 3.15.3. Automotive Thermoelectric Generation (ATEG)
 3.15.4. Heat pumps
 3.15.5. Thermoelectric Energy Harvesting in Japan
3.16. Flywheels
3.17. Electromagnetic field harnessing
3.18. Microbial and other fuel cells
3.19. Other harvesting options

4. EH FOR LAND VEHICLES
4.1. Solar Prius
4.2. Webasto pioneers see-through solar car
4.3. Pure EV motive power
4.4. EH shock absorbers in trucks, buses, cars
 4.4.1. Levant Power
4.4.2. Wattshocks
4.5. Regenerative braking
4.6. Electricity from engine and exhaust heat
4.6.1. Copenhagen bicycle
4.6.2. Volvo hybrid bus
4.6.3. Fisker Karma car
4.6.4. Tesla car
4.7. Cruise car solar golf cars
4.8. Vibration harvesting ATV in India
4.9. Piezoelectric roads for California?
4.10. Award for railroad energy harvesting

5. EH FOR VEHICLES ON WATER
5.1.1. Example of US navy unmanned surface vehicles
5.1.2. Tamarack Lake foldable inland boat USA
5.1.3. Kitegen seagoing kite boats Italy and Sauter UK
5.1.4. Larger solar lake boats Switzerland
5.1.5. SCOD / Atlantic Motors high performance cabin cruiser USA
5.1.6. MW Line solar seagoing boat Switzerland
5.1.7. Unmanned boat gathering oil USA
5.1.8. Seagoing yachts France
5.1.9. Tag plug in hybrid large sail boat South Africa, New Zealand
5.1.10. Türanor PlanetSolar solar catamaran Germany
5.1.11. Energy harvesting superyacht UK

6. EH FOR UNDERWATER CRAFT
6.1. Swimmers vs gliders
6.2. Wave and sun powered sea gliders
6.2.1. Virginia Institute of Marine Science USA
6.2.2. Falmouth Scientific Inc USA
6.2.3. Liquid Robotics USA
6.3. Robot jellyfish USA and Germany
6.4. Wind + Solar for ships

7. EH FOR AIRCRAFT
7.1. Energy harvesting
7.1.1. Multiple forms of energy to be managed
7.1.2. AeroVironment / NASA USA
7.1.3. Boeing USA
7.1.4. École Polytechnique Fédérale de Lausanne Switzerland
7.1.5. ETH Zurich Switzerland
7.1.6. Green Pioneer China
7.1.7. Gossamer Penguin USA
7.1.8. Néphélïos France
7.1.9. QinetiQ UK
7.1.10. Soaring China
7.1.11. Solair Germany
7.1.12. Solar Flight USA
7.1.13. Sunseeker USA
7.1.15. US Air Force
7.1.16. Northrop Grumman USA
7.2. Beamed energy

8. EV CHARGING STATIONS WITH HARVESTING
8.1. Energy harvesting
8.1.1. Solar powered charging stations
8.1.2. Alpha Energy USA
8.1.3. Beautiful Earth USA
8.1.4. Envision Solar International USA
8.1.5. E-Move Denmark
8.1.6. EVFuture India
8.1.7. Sanyo Japan
8.1.8. Solar Bullet train
8.1.9. Solar Unity Company USA
8.1.10. SunPods USA
8.1.11. Toyota Japan
8.1.12. Innowattech Israel

9. MARKET FORECASTS 2013-2024
9.1. Largest sectors
9.2. Numbers of manufacturers

APPENDIX 1: IDTECHEX PUBLICATIONS AND CONSULTANCY
APPENDIX 2: WIRELESS CHARGING

TABLES
1. Potential for improving energy harvesting efficiency
2. Main photovoltaic options compared
3. Possible scenario for number of EVs sold and the percentage using energy harvesting to charge traction batteries by type in 2014 and 2024, in numbers K
4. Main market drivers 2011-2021
5. Numbers of EVs, in thousands, sold globally, 2013-2024, by applicational sector
6. Ex-factory unit price of EVs, in thousands of US dollars, sold globally, 2013-2024, by applicational sector, rounded
7. Ex-factory value of EVs, in billions of US dollars, sold globally, 2013-2024, by applicational sector, rounded
8. Comparison of pn junction and photoelectrochemical photovoltaics
9. The main options for photovoltaics beyond conventional silicon compared
10. CdTe cost advantage in 2010
11. Efficiency of laminar organic photovoltaics and DSSC
12. Automotive requirements from a TEG
13. Ocean Empire LSV Specifications:
14. Multiple forms of energy management in aviation
9.1. Possible scenario for number of EVs sold and the percentage using energy harvesting to charge traction batteries by type in 2014 and 2024, in numbers K
9.2. Main market drivers 2011-2021
9.3. Numbers of EVs, in thousands, sold globally, 2013-2024, by applicational sector
9.4. Ex-factory unit price of EVs, in thousands of US dollars, sold globally, 2013-2024, by applicational sector, rounded
9.5. Ex-factory value of EVs, in billions of US dollars, sold globally, 2013-2024, by applicational sector, rounded
9.6. Approximate number of manufacturers of electric vehicles worldwide in 2010 by application with numbers for China

FIGURES
1. Long endurance AUV that gains electricity by surfacing to harness wave and sun power
2. Examples of energy harvesting technologies and their applicability to electric vehicles, land, water and air
3. Where energy harvesting fits into green energy
4. Focus of energy harvesting development in the value chain
5. Examples of energy harvesting technologies, developers and manufacturers
6. Primary energy harvesting choices by size and efficiency
7. Main energy harvesting technologies are compared by life and cost per watt
8. Hamburg solar shuttle with flexible photovoltaics
9. Possible sites for sensors with energy harvesting in cars
10. German solar electric car from 1982 that achieved 15 mph
11. Self sufficient accessory cluster - conformable tail lights and interior lighting - with timeframe to 2015 and beyond
12. Fiat Phylla running laboratory and enabling technologies
13. Phylla drive train
14. Numbers of EVs, in thousands, sold globally, 2013-2024, by applicational sector
15. Ex-factory unit price of EVs, in thousands of US dollars, sold globally, 2013-2024, by applicational sector, rounded
16. Ex-factory value of EVs, in billions of US dollars, sold globally, 2013-2024, by applicational sector,
2.1. Helicopter vibration harvester
2.2. Bell model 412 helicopter
2.3. MEMS by a dust mite that is less than one millimeter across
2.4. Some common technologies
2.5. Unfolding photovoltaics on vehicles
2.6. Swiss solar plane
2.7. Automotive power flow
2.8. Thermoelectrics to improve the efficiency of stationary Solid Oxide Fuel Cells
2.9. Oshkosh hybrid truck
2.10. Bluecar
2.11. Pininfarina Bolloré Bluecar cross section
2.12. Nissan Lithium-ion forklift with regenerative braking
2.13. 2010 Toyota Prius
2.14. Solar panel on roof of the new plug in Prius
2.15. Tribrid two-wheeler
2.16. Smart Skin concept
2.17. Alert icon for tire pressure
2.18. VisiTyre’s pick up coil
2.19. Visualization of the VisiTyre coil’s magnetic field.
3.1. Kopf Solarshiff pure electric solar powered lake boats in Germany and the UK for up to 150 people
3.2. NREL adjudication of efficiencies under standard conditions
3.3. Number of organisations developing printed and potentially printed electronics worldwide in 2010
3.4. Spectrolab roadmap for multilayer cells
3.5. DSSC design principle
3.6. HRTEM plane view BF image of germanium quantum dots in titania matrix
3.7. CIGS construction
3.8. The CIGS panels from Global Solar Energy
3.10. Operating principle of a popular form of organic photovoltaics
3.11. Module stack for photovoltaics
3.12. INL nantennas on film
3.13. Nanowire solar cells left by Canadian researchers and right by Konarka in the USA
3.14. Microscope image shows the fibers that are part of the microfiber nanogenerator. The top one is coated with gold
3.15. Schematic shows how pairs of fibers would generate electrical current
3.16. Piezo eel
3.17. Capacitive biomimetic energy harvesting
3.18. Midé energy harvesting electronics
3.19. Artificial Muscle business plan
3.20. Artificial Muscle’s actuator
3.21. Electraflyer Trike
3.22. Electraflyer uncowed
3.23. The thermoelectric materials with highest figure of merit
3.24. Operating principle of the Seiko Thermic wristwatch
3.25. The thermoelectric device in the Seiko Thermic watch with 104 elements each measuring 80X80X600 micrometers
3.26. Organisations with the largest number of patents on thermoelectric energy harvesting
3.27. TES New Energy creating clean energy
3.28. KELK datasheet
3.29. Demonstration of a TEG on a Ford Fusion 3.0L-V6
3.30. Exhaust Gas Recirculator specifications
3.31. Volvo Flywheel KERS components
3.32. Volvo flywheel KERS system layout
3.33. Magneto Marelli electrical KERS Motor Generator Unit
3.34. The Marelli system
3.35. Williams Marelli KERS flywheel
4.1. Toyota Prius solar roof option.
4.2. Webasto roof for Range Rover Evoque
4.3. Lagermax three wheel electric restaurant vehicle
4.4. Latest MIT solar car
4.5. Honda dream, the winning car in the 1996 World Solar Challenge. The custom made cells for the car are greater than 20% efficient.
4.6. Sunswift
4.7. See-through photovoltaics on the rear window of a large Mercedes concept vehicle late in 2011
4.8. GenShock prototype held by Humvee coil spring where it is installed
4.9. Levant Power Hummer
4.10. Genshock evolution
4.11. Hydraulic energy harvesting from Levant Power
4.12. Wattshocks electricity generating shock absorber
4.13. Wattshocks publicity
4.14. Ronggui Yang
4.15. The Copenhagen bicycle
4.16. The Copenhagen Wheel
4.17. Volvo hybrid bus Sweden
4.18. Fisker Karma
4.19. Tesla Motors Roadster pure EV performance car
4.20. Solar powered Cruise car
5.1. Example of US navy unmanned surface vehicles
5.2. Fully autonomous surface vehicle to compete in the Association for Unmanned Vehicles Systems International (AUVSI) and the Office of Navy Research (ONR)'s 5th International Autonomous Surface Vehicle Competition
5.3. Left to right Mr Ray Hirani, Dr Peter Harrop, Montgomery Gisborne
5.4. Tamarack Loon
5.5. Kitegen kite providing supplementary power to a ship
5.6. Ocean Empire LSV concept with electricity from kites, waves and sun
5.7. Solar powered boats for tourism cruising at 12 kph on Lake Geneva
5.8. MW Line solar seagoing boat
5.9. Zoom Solar powered unmanned boat gathering oil
5.10. Seagoing yacht with auxiliary engine
5.11. Rigged and ready, Tang is towed carefully to the launch site
5.12. Plug-in Tag 60 hybrid sailboat
5.13. Tag 60 at speed (CAD)
5.14. Main salon (CAD)
5.15. Tang's 18 kw motors
5.16. A lithium-ion battery module as used on Tang
5.17. EMM controls all electrical functions from touch screen consoles at each helm station
5.18. Türanor PlanetSolar solar catamaran
5.19. Türanor PlanetSolar - the world's largest solar powered boat
5.20. Türanor PlanetSolar out of the water
5.21. Skippers Raphael Domjan of Switzerland and Gerard D'Aboville of France (left) stand on the bridge of the solar boat
5.22. The rigid-wing superyacht concept called 'Soliloquy'
5.23. Head on view of the rigid-wing superyacht 'Soliloquy'
6.1. Wave and sun power recharging a glider AUV before it resumes its mission
6.2. Wave and sun powered sea glider
6.3. Autonomous wave glider
6.4. Aquajelly
6.5. AirJelly
6.6. Japanese robot jellyfish
6.7. German robot jellyfish
7.1. Military deployment of solar / fuel cell UAVs
7.2. Helios
7.3. SolarEagle
7.4. Solar Impulse
7.5. Solar impulse construction
7.6. ETH Zurich solar powered unmanned aircraft for civil use
7.7. Green Pioneer I
7.8. Gossamer Penguin
7.9. Néphélios planned solar airship
7.10. Larry Mauro USA
7.11. Test Flight of Soaring in 1994
7.12. Design of Soaring
7.13. Solar Flight
7.15. Solar and fuel cell powered airship concept
7.16. Northrop Grumman hybrid airship
8.1. Solar powered charging stations
8.2. Charging station at Rio de Janeiro
8.3. PC-Aero pure electric manned plane from Germany with solar charger
8.4. Solar recharging at Manheim New Jersey National Auto Dealers Exchange
8.5. Beautiful Earth Group's Brooklyn container-based charging station
8.6. E-Move solar charging station
8.7. EVFuture solar powered roadside charge 2008 model
8.8. EVFuture solar station detail
8.9. Bicycle parking lot in Sakurashinmachi, Setagaya, with Sanyo's Smart Energy System "Solar Parking Lot"
8.10. "Solar Parking Lot" based on Sanyo Electric's Smart Energy System
8.11. Sanyo Electric's Large-, Medium- and Small-Scale Smart Energy Systems
8.12. Solar powered train concept
8.13. Solar Unity solar powered charging installed in 2005
8.14. SunPods solar charging station
8.15. The 1.9kW Pure Electric Vehicle (PEV) and Plug In Hybrid Electric Vehicle (PHEV) charging station
8.16. Road surface electricity generator
8.17. Innowattech Piezo Electric Generator
8.18. Hino "no plug in" bus
8.19. In-road charging of small buses in Turin Italy
9.1. Numbers of EVs, in thousands, sold globally, 2013-2024, by applicational sector
9.2. Ex-factory unit price of EVs, in thousands of US dollars, sold globally, 2013-2024, by applicational sector, rounded
9.3. Ex-factory value of EVs, in billions of US dollars, sold globally, 2013-2024, by applicational sector, rounded
9.4. Approximate number of manufacturers of electric vehicles worldwide by application in 2010
9.5. Number of manufacturers of electric vehicles in China by application in 2010

Ordering:
Order Online - http://www.researchandmarkets.com/reports/2698292/
Order by Fax - using the form below
Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct and select the format(s) you require.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Web Address:</td>
<td>http://www.researchandmarkets.com/reports/2698292/</td>
</tr>
<tr>
<td>Office Code:</td>
<td>SCBR2H2T</td>
</tr>
</tbody>
</table>

Product Formats
Please select the product formats and quantity you require:

<table>
<thead>
<tr>
<th>Quantity</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronic (PDF)</td>
<td>1 - 5 Users: USD 3071</td>
</tr>
<tr>
<td>Electronic and</td>
<td>1 - 5 Users: USD 3303 + USD 58 Shipping/Handling</td>
</tr>
<tr>
<td>Hard Copy (PDF)</td>
<td></td>
</tr>
</tbody>
</table>

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in BLOCK CAPITALS

<table>
<thead>
<tr>
<th>Title:</th>
<th>Mr ☐ Mrs ☐ Dr ☐ Miss ☐ Ms ☐ Prof ☐</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Name:</td>
<td></td>
</tr>
<tr>
<td>Last Name:</td>
<td></td>
</tr>
<tr>
<td>Email Address: *</td>
<td></td>
</tr>
<tr>
<td>Job Title:</td>
<td></td>
</tr>
<tr>
<td>Organisation:</td>
<td></td>
</tr>
<tr>
<td>Address:</td>
<td></td>
</tr>
<tr>
<td>City:</td>
<td></td>
</tr>
<tr>
<td>Postal / Zip Code:</td>
<td></td>
</tr>
<tr>
<td>Country:</td>
<td></td>
</tr>
<tr>
<td>Phone Number:</td>
<td></td>
</tr>
<tr>
<td>Fax Number:</td>
<td></td>
</tr>
</tbody>
</table>

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: _______________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World