Nonlinear Digital Encoders for Data Communications

Description: This book presents digital encoders for data communications. After an introduction on data communications and different sequences, the authors present the frey encoder as a digital filter followed by the trellis-coded and parallel turbo trellis-coded modulation schemes using nonlinear digital encoders.

The book contains many numerical examples that complete the description of the analyzed schemes. Also, some performance simulation results are provided. Appendices include demonstrations for the mathematical apparatus used throughout the book and some Matlab/Simulink source files used to run the simulations. Therefore, students can easily understand the concepts presented in the book and to simulate the schemes.

Contents:

Preface ix

Introduction xi

Chapter 1. Applications of Nonlinear Digital Encoders 1

1.1. Secure communications using nonlinear digital encoders 1

1.1.1. The general nonlinear digital encoder scheme 3

1.1.2. Quasi–chaotic sequence properties 5

1.1.3. An example of simple nonlinear digital encoder: the Frey chaotic encoder 7

1.1.4. Simulation results revealing the quasi–chaotic properties for the sequences generated using the Frey encoder 9

1.2. Chaotic spreading sequences for direct–sequence code division multiple access 15

1.3. Sequence synchronization in discrete–time nonlinear systems 19

1.3.1. An example of sequence synchronization using the inverse system 19

1.3.2. The dead–beat synchronization method 23

1.3.3. A communication scheme using the dead–beat synchronization 25

Chapter 2. Presentation of the Frey Nonlinear Encoder as a Digital Filter 29

2.1. The mathematical analysis of the Frey encoder 29

2.2. The definitions and properties of the unsigned and 2's complement signed sample operators 30

2.3. The properties of the LCIRC nonlinear function used in the Frey encoder scheme 38

2.4. The simulation of the Frey sequence generator block in Simulink: some practical considerations 41

2.4.1. The transmitter chaotic sequence generator 41

2.4.2. The receiver chaotic sequence generator and the dead–beat synchronization with the transmitter block 43

2.4.3. The Simulink implementations for the blocks used in the Frey chaotic codec 45
Chapter 3. Trellis–Coded Modulation Schemes Using Nonlinear Digital Encoders 49

3.1. The presentation of the Frey nonlinear encoder as a convolutional encoder 49

3.2. Frey encoder trellis design optimization methods for pulse amplitude trellis–coded modulation (TCM) schemes 54

3.2.1. Increasing the coding gain by reducing the representation code word length in the input 56

3.2.2. Equivalence between a nonlinear and a linear encoder in a particular case 66

3.2.3. Generalized optimum encoder for a PAM–TCM transmission 69

3.2.4. Increasing the coding gain by increasing the number of outputs 75

3.3. Optimum nonlinear encoders for phase shift keying TCM schemes 84

3.3.1. Rate–1/2 optimum encoder for a QPSK–TCM transmission 84

3.3.2. Generalized optimum encoder for a PSK–TCM transmission 85

3.4. Optimum nonlinear encoders for quadrature amplitude modulation TCM schemes 89

3.5. Performance analysis of TCM data communications using modified nonlinear digital encoders: simulation results 91

Chapter 4. Parallel Turbo Trellis–Coded Modulation Schemes Using Nonlinear Digital Encoders 97

4.1. Recursive convolutional–left circulate (RC–LCIRC) encoder in a turbo trellis–coded modulation (TTCM) scheme 97

4.2. New recursive and systematic convolutional nonlinear encoders for parallel TTCM schemes 100

4.3. Punctured TTCM transmissions using recursive systematic convolutional nonlinear encoders 108

4.4. Extrinsic information transfer (EXIT) charts analysis for TTCM schemes using nonlinear RSC encoders 114

4.5. Performance analysis of TTCM data communications using nonlinear digital encoders: simulation results 115

Appendix 133

Bibliography 145

Index 151

Order by Fax - using the form below

Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

Product Name: Nonlinear Digital Encoders for Data Communications
Web Address: http://www.researchandmarkets.com/reports/2708424/
Office Code: SCDKELGK

Product Format
Please select the product format and quantity you require:

| Quantity | Hard Copy (Hard Back) | USD 106 + USD 29 Shipping/Handling |

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title: Mr ☐ Mrs ☐ Dr ☐ Miss ☐ Ms ☐ Prof ☐
First Name: __________________________ Last Name: __________________________
Email Address: * __________________________
Job Title: __________________________
Organisation: __________________________
Address: __________________________
City: __________________________
Postal / Zip Code: __________________________
Country: __________________________
Phone Number: __________________________
Fax Number: __________________________

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:
Marketing Code: __________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp