
Description: The finite element method (FEM) technique has been developed to simulate and analyze complex engineering problems. However, there are a number of drawbacks with finite element simulation of discontinuous problems, such as fracture mechanics problems, including the computational cost of a very fine finite element mesh and the complex remeshing strategy in capturing discontinuity. The extended finite element method (XFEM) has therefore been developed to improve the performance of the conventional finite element method in discontinuity problems.

Extended Finite Element Method: Theory and Applications introduces the theory and applications of XFEM in the linear and nonlinear problems of continua, structures, and geomechanics. It begins by introducing the concept of a partition of unity, various enrichment functions, and fundamentals of XFEM formulation. It then covers the theory and application of XFEM in large deformations, plasticity, and contact problems. The implementation of XFEM in fracture mechanics, including linear, cohesive, and ductile crack propagation, is also covered. Finally, the theory and applications of XFEM in multiphase fluid flow, including hydraulic fracturing in soil saturated media and crack propagation in thermo-hydro-mechanical porous media, are discussed in detail.

Key features:
- Comprehensively introduces XFEM analysis
- Explains the theory and applications of XFEM in various continuum and geo-mechanical problems
- Includes worked examples
- Accompanied by a website hosting source code and examples

Extended Finite Element Method: Theory and Applications is a comprehensive introduction to XFEM analysis for researchers and practitioners in industry, and is also an ideal textbook for graduate students in mechanical and civil engineering.

Contents:
- Series Preface xv
- Preface xvii
- 1 Introduction 1
 1.1 Introduction 1
 1.2 An Enriched Finite Element Method 3
 1.3 A Review on X-FEM: Development and Applications 5
 1.3.1 Coupling X-FEM with the Level-Set Method 6
 1.3.2 Linear Elastic Fracture Mechanics (LEFM) 7
 1.3.3 Cohesive Fracture Mechanics 11
 1.3.4 Composite Materials and Material Inhomogeneities 14
 1.3.5 Plasticity, Damage, and Fatigue Problems 16
 1.3.6 Shear Band Localization 19
1.3.7 Fluid Structure Interaction 19
1.3.8 Fluid Flow in Fractured Porous Media 20
1.3.9 Fluid Flow and Fluid Mechanics Problems 22
1.3.10 Phase Transition and Solidification 23
1.3.11 Thermal and Thermo-Mechanical Problems 24
1.3.12 Plates and Shells 24
1.3.13 Contact Problems 26
1.3.14 Topology Optimization 28
1.3.15 Piezoelectric and Magneto-Electroelastic Problems 28
1.3.16 Multi-Scale Modeling 29

2 Extended Finite Element Formulation 31

2.1 Introduction 31
2.2 The Partition of Unity Finite Element Method 33
2.3 The Enrichment of Approximation Space 35
2.3.1 Intrinsic Enrichment 35
2.3.2 Extrinsic Enrichment 36
2.4 The Basis of X-FEM Approximation 37
2.4.1 The Signed Distance Function 39
2.4.2 The Heaviside Function 43
2.5 Blending Elements 46
2.6 Governing Equation of a Body with Discontinuity 49
2.6.1 The Divergence Theorem for Discontinuous Problems 50
2.6.2 The Weak form of Governing Equation 51
2.7 The X-FEM Discretization of Governing Equation 53
2.7.1 Numerical Implementation of X-FEM Formulation 55
2.7.2 Numerical Integration Algorithm 57
2.8 Application of X-FEM in Weak and Strong Discontinuities 60
2.8.1 Modeling an Elastic Bar with a Strong Discontinuity 61
2.8.2 Modeling an Elastic Bar with a Weak Discontinuity 63
2.8.3 Modeling an Elastic Plate with a Crack Interface at its Center 66
2.8.4 Modeling an Elastic Plate with a Material Interface at its Center 68
4.6 The Hierarchical Method 135
4.6.1 A Hierarchical Blending Element for Discontinuous Gradient Enrichment 135
4.6.2 A Hierarchical Blending Element for Crack Tip Asymptotic Enrichments 137
4.7 The Cutoff Function Method 138
4.7.1 The Weighted Function Blending Method 140
4.7.2 A Variant of the Cutoff Function Method 142
4.8 A DG X–FEM Method 143
4.9 Implementation of Some Optimal X–FEM Type Methods 147
4.9.1 A Plate with a Circular Hole at Its Centre 148
4.9.2 A Plate with a Horizontal Material Interface 149
4.9.3 The Fiber Reinforced Concrete in Uniaxial Tension 151
4.10 Pre–Conditioning Strategies in X–FEM 154
4.10.1 Béchet’s Pre–Conditioning Scheme 155
4.10.2 Menk–Bordas Pre–Conditioning Scheme 156
5 Large X–FEM Deformation 161
5.1 Introduction 161
5.2 Large FE Deformation 163
5.3 The Lagrangian Large X–FEM Deformation Method 167
5.3.1 The Enrichment of Displacement Field 167
5.3.2 The Large X–FEM Deformation Formulation 170
5.3.3 Numerical Integration Scheme 172
5.4 Numerical Modeling of Large X–FEM Deformations 173
5.4.1 Modeling an Axial Bar with a Weak Discontinuity 173
5.4.2 Modeling a Plate with the Material Interface 177
5.5 Application of X–FEM in Large Deformation Problems 181
5.5.1 Die–Pressing with a Horizontal Material Interface 182
5.5.2 Die–Pressing with a Rigid Central Core 186
5.5.3 Closed–Die Pressing of a Shaped–Tablet Component 188
5.6 The Extended Arbitrary Lagrangian Eulerian FEM 192
5.6.1 ALE Formulation 192
5.6.1.1 Kinematics 193
5.6.1.2 ALE Governing Equations 194
5.6.2 The Weak Form of ALE Formulation 195
5.6.3 The ALE FE Discretization 196
5.6.4 The Uncoupled ALE Solution 198
5.6.4.1 Material (Lagrangian) Phase 199
5.6.4.2 Smoothing Phase 199
5.6.4.3 Convection (Eulerian) Phase 200
5.6.5 The X–ALE–FEM Computational Algorithm 202
5.6.5.1 Level Set Update 203
5.6.5.2 Stress Update with Sub–Triangular Numerical Integration 204
5.6.5.3 Stress Update with Sub–Quadrilateral Numerical Integration 205
5.7 Application of the X–ALE–FEM Model 208
5.7.1 The Coining Test 208
5.7.2 A Plate in Tension 209
6 Contact Friction Modeling with X–FEM 215
6.1 Introduction 215
6.2 Continuum Model of Contact Friction 216
6.2.1 Contact Conditions: The Kuhn–Tucker Rule 217
6.2.2 Plasticity Theory of Friction 218
6.2.3 Continuum Tangent Matrix of Contact Problem 221
6.3 X–FEM Modeling of the Contact Problem 223
6.3.1 The Gauss–Green Theorem for Discontinuous Problems 223
6.3.2 The Weak Form of Governing Equation for a Contact Problem 224
6.3.3 The Enrichment of Displacement Field 226
6.4 Modeling of Contact Constraints via the Penalty Method 227
6.4.1 Modeling of an Elastic Bar with a Discontinuity at Its Center 231
6.4.2 Modeling of an Elastic Plate with a Discontinuity at Its Center 233
6.5 Modeling of Contact Constraints via the Lagrange Multipliers Method 235
6.5.1 Modeling the Discontinuity in an Elastic Bar 239
6.5.2 Modeling the Discontinuity in an Elastic Plate 240
6.6 Modeling of Contact Constraints via the Augmented–Lagrange Multipliers Method 241
6.6.1 Modeling an Elastic Bar with a Discontinuity 244
6.6.2 Modeling an Elastic Plate with a Discontinuity 245
6.7 X–FEM Modeling of Large Sliding Contact Problems 246
6.7.1 Large Sliding with Horizontal Material Interfaces 249
6.8 Application of X–FEM Method in Frictional Contact Problems 251
6.8.1 An Elastic Square Plate with Horizontal Interface 251
6.8.1.1 Imposing the Unilateral Contact Constraint 252
6.8.1.2 Modeling the Frictional Stick Slip Behavior 255
6.8.2 A Square Plate with an Inclined Crack 256
6.8.3 A Double–Clamped Beam with a Central Crack 259
6.8.4 A Rectangular Block with an S Shaped Frictional Contact Interface 261
7 Linear Fracture Mechanics with the X–FEM Technique 267
7.1 Introduction 267
7.2 The Basis of LEFM 269
7.2.1 Energy Balance in Crack Propagation 270
7.2.2 Displacement and Stress Fields at the Crack Tip Area 271
7.2.3 The SIFs 273
7.3 Governing Equations of a Cracked Body 276
7.3.1 The Enrichment of Displacement Field 277
7.3.2 Discretization of Governing Equations 280
7.4 Mixed–Mode Crack Propagation Criteria 283
7.4.1 The Maximum Circumferential Tensile Stress Criterion 283
7.4.2 The Minimum Strain Energy Density Criterion 284
7.4.3 The Maximum Energy Release Rate 284
7.5 Crack Growth Simulation with X–FEM 285
7.5.1 Numerical Integration Scheme 287
7.5.2 Numerical Integration of Contour J Integral 289
7.6 Application of X–FEM in Linear Fracture Mechanics 290
7.6.1 X–FEM Modeling of a DCB 290
7.6.2 An Infinite Plate with a Finite Crack in Tension 294
7.6.3 An Infinite Plate with an Inclined Crack 298
7.6.4 A Plate with Two Holes and Multiple Cracks 300
7.7 Curved Crack Modeling with X-FEM 304
7.7.1 Modeling a Curved Center Crack in an Infinite Plate 307
7.8 X-FEM Modeling of a Bimaterial Interface Crack 309
7.8.1 The Interfacial Fracture Mechanics 310
7.8.2 The Enrichment of the Displacement Field 311
7.8.3 Modeling of a Center Crack in an Infinite Bimaterial Plate 314
8 Cohesive Crack Growth with the X-FEM Technique 317
8.1 Introduction 317
8.2 Governing Equations of a Cracked Body 320
8.2.1 The Enrichment of Displacement Field 322
8.2.2 Discretization of Governing Equations 323
8.3 Cohesive Crack Growth Based on the Stress Criterion 325
8.3.1 Cohesive Constitutive Law 325
8.3.2 Crack Growth Criterion and Crack Growth Direction 326
8.3.3 Numerical Integration Scheme 328
8.4 Cohesive Crack Growth Based on the SIF Criterion 328
8.4.1 The Enrichment of Displacement Field 329
8.4.2 The Condition for Smooth Crack Closing 332
8.4.3 Crack Growth Criterion and Crack Growth Direction 332
8.5 Cohesive Crack Growth Based on the Cohesive Segments Method 334
8.5.1 The Enrichment of Displacement Field 334
8.5.2 Cohesive Constitutive Law 335
8.5.3 Crack Growth Criterion and Its Direction for Continuous Crack Propagation 336
8.5.4 Crack Growth Criterion and Its Direction for Discontinuous Crack Propagation 339
8.5.5 Numerical Integration Scheme 341
8.6 Application of X-FEM Method in Cohesive Crack Growth 341
8.6.1 A Three-Point Bending Beam with Symmetric Edge Crack 341
8.6.2 A Plate with an Edge Crack under Impact Velocity 343
8.6.3 A Three-Point Bending Beam with an Eccentric Crack 346
9 Ductile Fracture Mechanics with a Damage-Plasticity Model in X-FEM 351
9.1 Introduction 351
9.2 Large FE Deformation Formulation 353
10.2.4 Numerical Integration Scheme 421

10.3 Application of the X–FEM Method in Deformable Porous Media with Arbitrary Interfaces 422
10.3.1 An Elastic Soil Column 422
10.3.2 An Elastic Foundation 424

10.4 Modeling Hydraulic Fracture Propagation in Deformable Porous Media 427
10.4.1 Governing Equations of a Fractured Porous Medium 428
10.4.2 The Weak Formulation of a Fractured Porous Medium 430

10.5 The X–FEM Formulation of Deformable Porous Media with Strong Discontinuities 434
10.5.1 Approximation of the Displacement and Pressure Fields 434
10.5.2 The X–FEM Spatial Discretization 437
10.5.3 The Time Domain Discretization and Solution Procedure 438

10.6 Alternative Approaches to Fluid Flow Simulation within the Fracture 442
10.6.1 A Partitioned Solution Algorithm for Interfacial Pressure 442
10.6.2 A Time–Dependent Constant Pressure Algorithm 444

10.7 Application of the X–FEM Method in Hydraulic Fracture Propagation of Saturated Porous Media 445
10.7.1 An Infinite Saturated Porous Medium with an Inclined Crack 446
10.7.2 Hydraulic Fracture Propagation in an Infinite Poroelastic Medium 449
10.7.3 Hydraulic Fracturing in a Concrete Gravity Dam 452

10.8 X–FEM Modeling of Contact Behavior in Fractured Porous Media 455
10.8.1 Contact Behavior in a Fractured Medium 455
10.8.2 X–FEM Formulation of Contact along the Fracture 456
10.8.3 Consolidation of a Porous Block with a Vertical Discontinuity 457

11 Hydraulic Fracturing in Multi–Phase Porous Media with X–FEM 461
11.1 Introduction 461
11.2 The Physical Model of Multi–Phase Porous Media 463
11.3 Governing Equations of Multi–Phase Porous Medium 465
11.4 The X–FEM Formulation of Multi–Phase Porous Media with Weak Discontinuities 467
11.4.1 Approximation of the Primary Variables 469
11.4.2 Discretization of Equilibrium and Flow Continuity Equations 473
11.4.3 Solution Procedure of Discretized Equilibrium Equations 476
11.5 Application of X–FEM Method in Multi–Phase Porous Media with Arbitrary Interfaces 477
11.6 The X–FEM Formulation for Hydraulic Fracturing in Multi–Phase Porous Media 482
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Web Address:</td>
<td>http://www.researchandmarkets.com/reports/2708498/</td>
</tr>
<tr>
<td>Office Code:</td>
<td>SCBRW5Q8</td>
</tr>
</tbody>
</table>

Product Format
Please select the product format and quantity you require:

<table>
<thead>
<tr>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard Copy (Hard Back):</td>
</tr>
</tbody>
</table>

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in BLOCK CAPITALS

<table>
<thead>
<tr>
<th>Title:</th>
<th>Mr ☐ Mrs ☐ Dr ☐ Miss ☐ Ms ☐ Prof ☐</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Name:</td>
<td></td>
</tr>
<tr>
<td>Email Address: *</td>
<td></td>
</tr>
<tr>
<td>Job Title:</td>
<td></td>
</tr>
<tr>
<td>Organisation:</td>
<td></td>
</tr>
<tr>
<td>Address:</td>
<td></td>
</tr>
<tr>
<td>City:</td>
<td></td>
</tr>
<tr>
<td>Postal / Zip Code:</td>
<td></td>
</tr>
<tr>
<td>Country:</td>
<td></td>
</tr>
<tr>
<td>Phone Number:</td>
<td></td>
</tr>
<tr>
<td>Fax Number:</td>
<td></td>
</tr>
</tbody>
</table>

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☒ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:

Research and Markets, Guinness Center, Taylors Lane, Dublin 8, Ireland.

☐ Pay by wire transfer: Please transfer funds to:

<table>
<thead>
<tr>
<th>Account number</th>
<th>833 130 83</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sort code</td>
<td>98-53-30</td>
</tr>
<tr>
<td>Swift code</td>
<td>ULSBIE2D</td>
</tr>
<tr>
<td>IBAN number</td>
<td>IE78ULSB98533083310383</td>
</tr>
<tr>
<td>Bank Address</td>
<td>Ulster Bank, 27-35 Main Street, Blackrock, Co. Dublin, Ireland.</td>
</tr>
</tbody>
</table>

If you have a Marketing Code please enter it below:

Marketing Code: ____________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World