Modern Earth Buildings. Woodhead Publishing Series in Energy

Description: The construction of earth buildings has been taking place worldwide for centuries. With the improved energy efficiency, high level of structural integrity and aesthetically pleasing finishes achieved in modern earth construction, it is now one of the leading choices for sustainable, low-energy building. Modern earth buildings provides an essential exploration of the materials and techniques key to the design, development and construction of such buildings.

Beginning with an overview of modern earth building, part one provides an introduction to design and construction issues including insulation, occupant comfort and building codes. Part two goes on to investigate materials for earth buildings, before building technologies are explored in part three including construction techniques for earth buildings. Modern earth structural engineering is the focus of part four, including the creation of earth masonry structures, use of structural steel elements and design of natural disaster-resistant earth buildings. Finally, part five of Modern earth buildings explores the application of modern earth construction through international case studies.

With its distinguished editors and international team of expert contributors, Modern earth buildings is a key reference work for all low-impact building engineers, architects and designers, along with academics in this field.

- Provides an essential exploration of the materials and techniques key to the design, development and construction of modern earth buildings
- Comprehensively discusses design and construction issues, materials for earth buildings, construction techniques and modern earth structural engineering, among other topics
- Examines the application of modern earth construction through international case studies

Contents:

Contributor contact details

Woodhead Publishing Series in Energy

Preface

Part I: Introduction to modern earth buildings

Chapter 1: Overview of modern earth building

Abstract:

1.1 Introduction

1.2 Definition of modern earth building

1.3 The significance of modern earth building in the current and future construction industries

1.4 Changes in the modern earth building industry

1.5 Managing the demands of the modern construction industry

Chapter 2: Hygrothermal behaviour and occupant comfort in modern earth buildings

Abstract:

2.1 Introduction

2.2 Hygrothermal loads and modelling
2.3 Thermal and hygric properties of earth materials
2.4 Hygrothermal behaviour and passive air conditioning
2.5 Indoor health and air quality
2.6 Sources of further information
2.8 Appendix: nomenclature

Chapter 3: Fabric insulation, thermal bridging and acoustics in modern earth buildings

Abstract:
3.1 Introduction
3.2 Approaches to fabric insulation
3.3 Thermal bridging theory
3.4 Thermal bridging simulation tools
3.5 Acoustic reverberation
3.6 Sources of further information
3.8 Appendix: nomenclature

Chapter 4: Modern earth building codes, standards and normative development

Abstract:
4.1 Introduction: a short history of building codes for using earth as a building material
4.2 Types of 'standards' for earth buildings
4.3 Normative documents for earth building
4.4 Selecting the parameters for earth building standards
4.5 New developments in earth building standards
4.6 Conclusions

Chapter 5: Passive house design: a benchmark for thermal mass fabric integration

Abstract:
5.1 Introduction
5.2 Description of Passive House
5.3 Functional principles of Passive House
5.4 Case studies of Passive Houses in different climates
5.5 Examples of Passive House architecture in Germany
5.6 Future trends
5.7 Sources of further information

Part II: Earth materials engineering and earth construction
Chapter 6: Soil materials for earth construction: properties, classification and suitability testing

Abstract:
6.1 Introduction
6.2 Soil formation
6.3 Soil types
6.4 Soil consistency
6.5 Compaction of soil
6.6 Conclusion
6.8 Appendix

Chapter 7: Alternative and recycled materials for earth construction

Abstract
7.1 Introduction
7.2 Classification
7.3 Types of alternative material
7.4 Characteristics of alternative and recycled materials
7.5 Form of recycled and alternative materials: bulk or binder
7.6 Leaching
7.7 Physical and mechanical properties of alternative and recycled materials
7.8 The use and reuse life cycle
7.9 Future trends and conclusions
7.10 Sources of further information
7.12 Appendix

Chapter 8: Soil mechanics and earthen construction: strength and mechanical behaviour

Abstract:
8.1 Introduction
8.2 Basic mechanics
8.3 Fundamental soil behaviour
8.4 Effective stress
8.5 Models of shear strength for soils
8.6 Unsaturated soil behaviour
8.7 The use of soil mechanics in earthen construction
Chapter 9: Soil stabilisation and earth construction: materials, properties and techniques

Abstract:

9.1 Introduction
9.2 Lime stabilisation
9.3 Cement and pozzolans
9.4 Bituminous binders and emulsions
9.5 Synthetic binders, polymers and adhesives
9.6 Fibre reinforcement
9.7 Selection tool for modern stabilised earth construction

Chapter 10: Integral admixtures and surface treatments for modern earth buildings

Abstract:

10.1 Introduction
10.2 Integral admixtures for modern earth construction
10.3 Surface treatment for modern earth buildings
10.4 Future trends
10.5 Sources of information

Chapter 11: Weathering and durability of earthen material and structures

Abstract:

11.1 Introduction
11.2 Water content increase in earthen walls
11.3 Strategies to increase the durability of earth walls
11.4 Current tests for assessing the durability of earthen materials
11.5 Surface coatings and finishes of earth structures
11.6 Long-term performance testing of earth walls
11.7 Future trends and conclusions
11.8 Acknowledgements

Part III: Earth building technologies and earth construction techniques

Chapter 12: History of earth building techniques

Abstract:

12.1 Introduction
12.2 Earth building techniques in Asia
12.3 Earth building techniques in Africa
12.4 Earth building techniques in Europe
12.5 Earth building techniques in North America
12.6 Earth building techniques in South America
12.7 Earth building techniques in Australasia
12.8 Conclusions

Chapter 13: Stabilised soil blocks for structural masonry in earth construction
Abstract:
13.1 Introduction
13.2 Soil stabilisation techniques
13.3 Production of stabilised soil blocks (SSBs)
13.4 Characteristics of stabilised soil blocks (SSBs)
13.5 Cement-soil mortars for stabilised soil block masonry
13.6 Stabilised soil block masonry
13.7 Long-term performance, repair and retrofitting of stabilised soil block buildings
13.8 Case studies of cement-stabilised soil block (CSSB) buildings

Chapter 14: Modern rammed earth construction techniques
Abstract:
14.1 Introduction
14.2 Material sourcing
14.3 Proportioning and mixing
14.4 Formwork
14.5 Installation
14.6 Future trends and conclusions

Chapter 15: Pneumatically impacted stabilized earth (PISE) construction techniques
Abstract:
15.1 Introduction
15.2 Materials used for pneumatically impacted stabilized earth (PISE) construction
15.3 The forming system
15.4 Reinforcement of pneumatically impacted stabilized earth (PISE) walls
15.5 Equipment for proportioning, mixing and placement
15.6 The pneumatically impacted stabilized earth (PISE) method
15.7 Conclusion
15.8 Appendix

Chapter 16: Conservation of historic earth buildings

Abstract:

16.1 Introduction
16.2 Common causes of deterioration on historic earth buildings
16.3 Conservation of earth architecture
16.4 Case study of the UNESCO heritage site of Diriyah in the Atturaif region of Saudi Arabia
16.5 Case study of earth buildings in Italy: Loreto Aprutino in the Abruzzo region
16.6 Conclusions

Part IV: Modern earth structural engineering

Chapter 17: Earth masonry structures: arches, vaults and domes

Abstract:

17.1 Introduction
17.2 Structural theory for arches, vaults and domes
17.3 Earth masonry arches
17.4 Earth masonry vaults
17.5 Earth masonry domes
17.6 Material properties of earth masonry structure
17.7 Design and construction criteria for earth masonry structures
17.8 Future trends
17.9 Acknowledgments

Chapter 18: Structural steel elements within stabilised rammed earth walling

Abstract:

18.1 Introduction
18.2 Structural steel for stabilised rammed earth (SRE) walling
18.3 Design parameters for using structural steel within stabilised rammed earth (SRE) walling
18.4 The use of steel lintels for stabilised rammed earth (SRE) applications
18.5 Steel columns embedded within stabilised rammed earth (SRE) walls
18.6 Structural systems for elevated or 'precast' stabilised rammed earth (SRE) panels
Chapter 19: Natural disasters and earth buildings: resistant design and construction

Abstract:

19.1 Introduction
19.2 Earthquakes and earth buildings
19.3 Earthquake engineering
19.4 Wind and storms
19.5 Earth building design for wind resistance
19.6 Flood hazards and earth buildings
19.7 Volcanoes and landslides
19.8 Future trends

Chapter 20: Embankments and dams

Abstract:

20.1 Introduction
20.2 Types and selection of embankment dams
20.3 Zoning of embankment dams and construction materials
20.4 Embankment dam construction specifications
20.5 Stability analysis of embankment dams
20.6 Dam freeboard requirement
20.7 Failure mechanisms
20.8 Maintenance of embankment dams
20.9 Future trends
20.10 Norms and standards

Part V: Application of modern earth construction: international case studies

Chapter 21: North American modern earth construction

Abstract:

21.1 Introduction
21.2 Seventh generation thinking and earth construction
Chapter 21: Applications of earth construction

21.3 The interplay of indoor and outdoor weather
21.4 Applications of earth construction in hot climates
21.5 Applications of earth construction in wet and cold climates
21.6 Optimizing rammed earth compressive strength
21.7 North American-style rammed earth
21.8 Case studies of North American earth construction
21.9 Design elegance of modern earth buildings
21.10 Future trends
21.11 Sources of further information
21.12 Acknowledgments

Chapter 22: Australian modern earth construction

Abstract:

22.1 Introduction
22.2 Uses of stabilised rammed earth in different regions of Australia
22.3 Approaches to material type and selection
22.4 Formwork and construction techniques: the ‘Stabilform system’
22.5 Stabilised rammed earth (SRE) walls
22.6 Designing for thermal comfort
22.7 Standards and specifications for modern earth construction in Australia
22.8 The cost of stabilised rammed earth (SRE) construction in Australia
22.9 Case studies of modern earth buildings in Victoria, Australia
22.10 Future trends
22.11 Sources of further information
22.12 Acknowledgements

Chapter 23: European modern earth construction

Abstract:

23.1 Introduction
23.2 Conservation and revival of traditional techniques
23.3 Modern earth construction techniques
23.4 Case studies of modern earth buildings throughout Europe
23.5 Future trends
23.6 Acknowledgements
Chapter 24: Modern rammed earth construction in China

Abstract:

24.1 Introduction

24.2 Challenges for modern rammed earth construction in China

24.3 Opportunities for modern rammed earth construction in China

24.4 Approaches to material type and selection

24.5 Construction techniques and formwork

24.6 Case studies

24.7 Future trends

Appendices

Appendix 1: Techno-economic analysis and environmental assessment of stabilised rammed earth (SRE) building construction

Appendix 2: Techno-economic analysis and environmental assessment of stabilized insulated rammed earth (SIREWALL) building

Index

Order by Fax - using the form below

Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

Product Name: Modern Earth Buildings. Woodhead Publishing Series in Energy
Web Address: http://www.researchandmarkets.com/reports/2719675/
Office Code: SC6I4FY1

Product Format
Please select the product format and quantity you require:

<table>
<thead>
<tr>
<th>Quantity</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard Copy (Hard Back)</td>
<td>USD 280 + USD 29 Shipping/Handling</td>
</tr>
</tbody>
</table>

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title: [] Mr [] Mrs [] Dr [] Miss [] Ms [] Prof
First Name: ___________________________ Last Name: ___________________________
Email Address: * _______________________
Job Title: _____________________________
Organisation: _________________________
Address: _____________________________
City: ________________________________
Postal / Zip Code: _____________________
Country: _____________________________
Phone Number: _________________________
Fax Number: __________________________

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets, Guinness Center, Taylors Lane, Dublin 8, Ireland.

☐ Pay by wire transfer:
Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB985333083313083
Bank Address Ulster Bank, 27-35 Main Street, Blackrock, Co. Dublin, Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: ________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World