Using Robots in Hazardous Environments

Description: There have been major recent advances in robotic systems that can replace humans in undertaking hazardous activities in demanding or dangerous environments. Published in association with the CLAWAR (Climbing and Walking Robots and Associated Technologies Association), this important book reviews the development of robotic systems for de-mining and other risky activities such as fire-fighting.

Part one provides an overview of the use of robots for humanitarian de-mining work. Part two discusses the development of sensors for mine detection whilst Part three reviews developments in both teleoperated and autonomous robots. Building on the latter, Part four concentrates on robot autonomous navigation. The final part of the book reviews research on multi-agent-systems (MAS) and the multi-robotics-systems (MRS), promising tools that take into account modular design of mobile robots and the use of several robots in multi-task missions.

With its distinguished editors and international team of contributors, Using robots in hazardous environments: landmine detection, de-mining and other applications is a standard reference for all those researching the use of robots in hazardous environments as well as government and other agencies wishing to use robots for dangerous tasks such as landmine detection and disposal.

- Reviews the development of robotic systems for de-mining and other risky activities
- Discusses the development and applications of sensors for mine detection using different robotic systems
- Examines research on multi-agent-systems and multi-robotics systems

Contents:

Part 1 Humanitarian demining: The evolution of robots and the challenges: Introduction: Mobile robotics systems for humanitarian de-mining and risky interventions
Robot for non-conventional demining process: From remote control to autonomy
Locomotion and localisation of humanitarian demining robots
Sustainable and appropriate technologies for humanitarian demining
Some problems of robotic humanitarian demining evolution. Part 2 Sensors for mine detection and robotics:
Sensing capabilities for mobile robotics
Sensor fusion for automated landmine detection on a mobile robot
Relating soil properties to performance of metal detectors and ground penetrating radars
Contribution of geophysics for landmines and UXO detection: Case study in the Egyptian environment
Detecting landmine fields from low-resolution aerial infrared images
GPS data correction using encoders and INS sensors. Part 3 Autonomous and teleoperated robots for humanitarian demining: Environment-adaptive antipersonnel mine detection system: Advanced mine sweeper
Mechanical mine clearance: Development, applicability and difficulties
Robotic tools for demining and risky operations
RAVON
The robust autonomous vehicle for off-road navigation
Computer training in handling with ground teleoperated robots for demining. Part 4 Robot autonomous navigation and sensors: A fuzzy-genetic algorithm and obstacle path generation for walking robot with manipulator
Synthesis of a sagittal gate for a biped robot during single support phase
Fuzzy logic control in support of autonomous navigation of humanitarian demining robots
Human victim detection and stereo-based terrain traversability analysis for behavior-based robot navigation
Simulation of a mobile multilink robot with vision virtual reality system
Estimation of the distance by using the signal strength for localization of networked mobile sensors and actuators. Part 5 Multi robotics systems: Navigation and cooperation
Experimental study on the effects of communication on cooperative search in complex environments
Mobile ad-hoc networking supporting multi-hop connections in multi-robot scenarios
A decentralized planification architecture for a swarm of mobile robots
Using the NVIDIA CUDA application in the cognitive supervision and control of the multi robot system methodology for the supervision and control of the multi robotic system with CUDA application
Laser based cooperative multi-robot map building for indoor environments
Heterogeneous multi-agent system behaviour patterns for robotics applications
A light-weight communication protocol for tele-operated Robots in risky emergency operations.

Ordering:
Order Online - http://www.researchandmarkets.com/reports/2720038/
Order by Fax - using the form below
Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

Product Name: Using Robots in Hazardous Environments
Web Address: http://www.researchandmarkets.com/reports/2720038/
Office Code: SCAYWC5L

Product Format
Please select the product format and quantity you require:

Quantity
Hard Copy (Hard Back):
USD 300 + USD 28 Shipping/Handling

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title: Mr [] Mrs [] Dr [] Miss [] Ms [] Prof []
First Name: ____________________________ Last Name: ____________________________
Email Address: * ____________________________
Job Title: ____________________________
Organisation: ____________________________
Address: ____________________________
City: ____________________________
Postal / Zip Code: ____________________________
Country: ____________________________
Phone Number: ____________________________
Fax Number: ____________________________

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: __________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp