
Description: Ten year forecasts

Marine electric vehicles are now a rapidly growing market due to new capability, affordability and legislation banning or restricting internal combustion engines. Our research finds that the market for electric water craft, including those on and under water, will increase rapidly from $2.6 billion in 2013 to $7.3 billion in 2024. In addition there is a market for electric outboard motors that will more than triple in value as high power pure electric versions become increasingly viable. There is also a new market for water borne electric aircraft.

Scope of coverage

This report covers hybrid and pure electric marine electric vehicles; on-water and underwater, inland and seagoing. It covers the closely allied topics of electric outboard motors and electric planes operating from water and even has some mention of electrification benefiting conventional craft. Overall, it encompasses leisure, military, industrial, commercial and other applications and the technology trends.

Marine electric vehicles make new things possible and increasingly they have lower cost of ownership and are the only practicable way of meeting the newer, more onerous pollution regulations for inland waterways and harbours.

Marine electric craft are increasingly made by existing shipyards making conventional craft but there is also a trend for those making land or airborne electric vehicles to make marine ones as well. Sometimes we see Apple levels of innovation with new entrants, something notably absent with such things as electric cars. As with all electric vehicles, the advances in the components in these vehicles and their infrastructure are proceeding disruptively rather than incrementally and the report discusses this in the marine context.

The many interviews and investigations carried out in the preparation of the report have revealed a market that is larger and growing faster than is popularly assumed, though some incumbents miss what is happening with new entrants and in other parts of the world. The military aspect for example is very concentrated in the USA and involves small numbers and large unit prices until such things as swarming robot jellyfish become a reality.

Water borne electric aircraft and the hybridisation of ocean going leisure yachts are impressive in Europe, where the leader in AUVs is located. Some of the most advanced pure electric and fuel cell hybrid AUVs are in India and Japan. Clearly a global view, presented here for the first time, is essential if the full potential is to be understood. 50 organisations from across the world are profiled and many more are mentioned in context.

Contents:

1. EXECUTIVE SUMMARY AND CONCLUSIONS
 1.1. The whole picture
 1.1.1. Global marine EV forecasts 2013-2024
 1.2. Market drivers and centers of excellence
 1.2.1. AUV market
 1.2.2. Marine EVs compared to all EVs
 1.3. Forecast rationale
 1.4. Benefits of marine electric vehicles
 1.4.1. Price sensitivity
 1.4.2. Favoured Marine EV Technologies
 1.4.3. Examples of backup data
 1.5. Latest view from Europe
 1.6. Power electronics lessons from Battery Osaka, PV Expo, Smart Grid Expo Sept 3-5 2014, Osaka, Japan
 1.7. Lessons from Electric and Hybrid Marine World Expo June 2014, Amsterdam
 1.8. Effect of 2015 oil price collapse on electric vehicles
2. INTRODUCTION
2.1. Definitions and scope of this report
2.2. The EV value chain
2.3. Benefits of marine electric vehicles
2.4. Pure electric marine vehicles
2.5. Hybrid marine vehicles
2.6. Born electric
2.7. New structural advances and smart skin
2.8. Electric outboard motors
2.8.1. Regen Nautic Inc USA
2.8.2. Outboard motor market size
2.8.3. Oceanvolt SD electric saildrive system wins Pittman Innovation Award
2.9. Tightening air pollution laws boost e-ships
2.10. The death of coal and oil boost EVs
2.11. Examples of Interviews Concerning High Power Energy Harvesting on Marine Craft 2015
2.12. Examples of presentations at Electric and Hybrid Marine Amsterdam June 2015

3. SURFACE CRAFT
3.1. Commonality with land EVs
3.1.1. Grants for land and water
3.1.2. Effect of land EV manufacturers entering marine
3.1.3. Pollution laws back electric boats - India, Europe, Taiwan, USA
3.2. Small electric surface craft
3.2.1. Andaman and Electric Boats Thailand
3.2.2. aquawatt Mechatronik und Yachtbau Austria
3.2.3. Bionx Austria, Canada
3.2.4. Boesch Boats for water skiing Switzerland
3.2.5. Boote Marian luxury inland boats Austria
3.2.6. CleaneMarine Denmark
3.2.7. Duffy inland electric deck boats, USA
3.2.8. Epic Wakeboats hybrid sport boat USA
3.2.9. Erun GmbH inland sport boats Switzerland
3.2.10. Kona USA
3.2.11. Leisure Life USA
3.2.12. MarineKart Switzerland
3.2.13. Mercedes Germany
3.2.14. Quadrofoil, Slovenia
3.2.15. Ruban Bleu France with 2013 interview
3.2.16. Seaway USA
3.2.17. Supiore Denmark
3.2.18. Tamarack Lake foldable inland boat USA
3.3. Large electric surface craft
3.3.1. ALU MARINE France with 2013 interview
3.3.2. Callender Designs UK
3.3.3. CAT hybrid powertrain USA
3.3.4. Corvus Energy Canada
3.3.5. DNV GL inland ferries go pure electric, Norway
3.3.6. Feadship, Netherlands
3.3.7. Ferguson's shipyard in Port Glasgow, UK
3.3.8. Foss Maritime Canada, USA
3.3.9. GE Power Conversion USA
3.3.10. Havyard to construct ICE platform supply vessel, Norway
3.3.11. Hydrogenics New York
3.3.12. Juliet Marine Systems USA
3.3.13. Kitegen Italy and Sauter UK
3.3.14. Larger solar lake boats Switzerland
3.3.15. MW Line Switzerland
3.3.16. SAFT - electrification of ferry boats
3.3.17. Sauter supertanker
3.3.18. SCOD / Atlantic Motors USA
3.3.19. Seagoing yachts France
3.3.20. Tag Yachts South Africa, New Zealand
3.3.21. Tugboats UK
3.3.22. Türanor PlanetSolar Germany
3.3.23. Unmanned boat gathering oil USA
3.3.24. Waternet The Netherlands
3.4. Electric flying boats
3.4.1. Equator Aircraft Norway
3.4.2. FlyNano Finland
3.4.3. Marine Unmanned Aerial Vehicles UAV

4. MANNED UNDERWATER ELECTRIC VEHICLES
4.1. Sea scooters for scuba divers, Italy, China
4.2. Divers leg thrusters
4.3. Leisure and tourist submarines
4.3.1. Kittredge UK
4.3.2. Odyssea USA
4.3.3. International Venture Craft USA
4.3.4. Hawkes Ocean Technologies USA
4.3.5. Silvercrest/UVI Canada, UK
4.3.6. Submarines that are efficient surface boats
4.3.7. US Submarines Inc USA
4.3.8. Will submarines fly?

5. AUTONOMOUS UNDERWATER VEHICLES (AUVS)
5.1. New applications in 2015
5.2. Swimmers vs gliders
5.2.1. Definitions
5.2.2. Demand
5.2.3. Gliders
5.2.4. Swimmers
5.3. Wave and sun powered sea gliders
5.3.1. Virginia Institute of Marine Science USA
5.3.2. Falmouth Scientific Inc USA
5.3.3. Liquid Robotics USA
5.4. AUV swimmers North America
5.4.1. Boeing USA
5.4.2. MBARI USA
5.4.3. Florida Atlantic University USA
5.4.4. Hydroid USA
5.4.5. OceanServer Technology USA
5.5. AUV swimmers Europe
5.5.1. Kongsberg Norway
5.5.2. Teledyne USA, Iceland
5.5.3. Mine Destruction AUV UK
5.5.4. Autosub6000 UK
5.5.5. a.r.s Technologies GmbH Germany
5.5.6. Robot cuttlefish Switzerland
5.5.7. DEDAVE Germany
5.6. AUV swimmers East Asia
5.6.1. DRDO India
5.6.2. JAMSTEC Japan
5.7. Deploying AUVs Canada
5.8. Network of unmanned undersea platforms assist manned vessels
5.9. Marine quadcopters

6. BIOMIMETIC UNMANNED UNDERWATER CRAFT
6.1. Robot jellyfish USA and Germany

7. MARINE DRIVE TRAINS, COMPONENTS AND INFRASTRUCTURE
7.1.1. EEI Italy Silent Propulsion System: Sailing boats as series hybrids
7.1.2. Drive trains
7.2. Traction batteries
7.2.1. The lure of lithium-ion
7.2.2. Cells - modules - battery packs
7.2.3. NiMH vs lithium
7.2.4. The ideal traction battery pack
7.2.5. Recent improvements
7.2.6. Traction batteries today
7.2.7. Trends in energy storage vs battery pack voltage
7.2.8. Move to high voltage
7.2.9. Many suppliers
7.2.10. Pouch problems?
7.2.11. The lure of lithium polymer versions of lithium-ion
7.2.12. Genuinely solid state traction batteries
7.2.13. New chemistries for lithium-ion batteries
7.2.14. Impediments
7.2.15. ABSL
7.2.16. SAFT
7.3. Range extenders
7.4. Fuel cells
7.5. Electric motors
7.5.1. New motors and outboards for boats
7.5.2. AC vs DC
7.6. Motor position
7.7. Charging infrastructure for marine EVs
7.7.1. General needs and solutions
7.8. Case study: Arctic under ice survey
7.9. MBARI research AUV deployment

Ordering:

Order Online - http://www.researchandmarkets.com/reports/2722810/

Order by Fax - using the form below

Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct and select the format(s) you require.

Web Address: http://www.researchandmarkets.com/reports/2722810/
Office Code: SCH3DUNP

Product Formats
Please select the product formats and quantity you require:

Quantity

- Electronic (PDF) - 1 - 5 Users:
 USD 5233
- Electronic and Hard Copy (PDF) - 1 - 5 Users:
 USD 5549 + USD 58 Shipping/Handling
- Electronic (PDF) - 1 - 10 Users:
 USD 7852
- Electronic and Hard Copy (PDF) - 1 - 10 Users:
 USD 8168 + USD 58 Shipping/Handling

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title:
Mr ☐ Mrs ☐ Dr ☐ Miss ☐ Ms ☐ Prof ☐
First Name:
Last Name:
Email Address: *
Job Title:
Organisation:
Address:
City:
Postal / Zip Code:
Country:
Phone Number:
Fax Number:
Title: Mr □ Mrs □ Dr □ Miss □ Ms □ Prof □

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:

Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:

Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: __________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:

(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World