Nitride Semiconductor Light-Emitting Diodes (LEDs). Woodhead Publishing
Series in Electronic and Optical Materials

Description: The development of nitride-based light-emitting diodes (LEDs) has led to advancements in high-brightness LED technology for solid-state lighting, handheld electronics, and advanced bioengineering applications. Nitride Semiconductor Light-Emitting Diodes (LEDs) reviews the fabrication, performance, and applications of this technology that encompass the state-of-the-art material and device development, and practical nitride-based LED design considerations.

Part one reviews the fabrication of nitride semiconductor LEDs. Chapters cover molecular beam epitaxy (MBE) growth of nitride semiconductors, modern metalorganic chemical vapor deposition (MOCVD) techniques and the growth of nitride-based materials, and gallium nitride (GaN)-on-sapphire and GaN-on-silicon technologies for LEDs. Nanostructured, non-polar and semi-polar nitride-based LEDs, as well as phosphor-coated nitride LEDs, are also discussed. Part two covers the performance of nitride LEDs, including photonic crystal LEDs, surface plasmon enhanced LEDs, color tuneable LEDs, and LEDs based on quantum wells and quantum dots. Further chapters discuss the development of LED encapsulation technology and the fundamental efficiency droop issues in gallium indium nitride (GaInN) LEDs. Finally, part three highlights applications of nitride LEDs, including liquid crystal display (LCD) backlighting, infrared emitters, and automotive lighting.

Nitride Semiconductor Light-Emitting Diodes (LEDs) is a technical resource for academics, physicists, materials scientists, electrical engineers, and those working in the lighting, consumer electronics, automotive, aviation, and communications sectors.

- Reviews fabrication, performance, and applications of this technology that encompass the state-of-the-art material and device development, and practical nitride-based LED design considerations
- Covers the performance of nitride LEDs, including photonic crystal LEDs, surface plasmon enhanced LEDs, color tuneable LEDs, and LEDs based on quantum wells and quantum dots
- Highlights applications of nitride LEDs, including liquid crystal display (LCD) backlighting, infra-red emitters, and automotive lighting

Contents: Contributor contact details
Woodhead Publishing Series in Electronic and Optical Materials
Dedication
Preface
Part I: Materials and fabrication
1: Molecular beam epitaxy (MBE) growth of nitride semiconductors
Abstract
1.1 Introduction
1.2 Molecular beam epitaxial (MBE) growth techniques
1.3 Plasma-assisted MBE (PAMBE) growth of nitride epilayers and quantum structures
1.4 Nitride nanocolumn (NC) materials
1.5 Nitride nanostructures based on NCs
1.6 Conclusion
2: Modern metal-organic chemical vapor deposition (MOCVD) reactors and growing nitride-based materials
Abstract
2.1 Introduction
2.2 MOCVD systems
2.3 Planetary reactors
2.4 Close-coupled showerhead (CCS) reactors
2.5 In situ monitoring systems and growing nitride-based materials
2.6 Acknowledgements
3: Gallium nitride (GaN) on sapphire substrates for visible LEDs
Abstract
3.1 Introduction
3.2 Sapphire substrates
3.3 Strained heteroepitaxial growth on sapphire substrates
3.4 Epitaxial overgrowth of GaN on sapphire substrates
3.5 GaN growth on non-polar and semi-polar surfaces
3.6 Future trends
4: Gallium nitride (GaN) on silicon substrates for LEDs
 Abstract
 4.1 Introduction
 4.2 An overview of gallium nitride (GaN) on silicon substrates
 4.3 Silicon overview
 4.4 Challenges for the growth of GaN on silicon substrates
 4.5 Buffer-layer strategies
 4.6 Device technologies
 4.7 Conclusion
5: Phosphors for white LEDs
 Abstract
 5.1 Introduction
 5.2 Optical transitions of Ce³⁺ and Eu²⁺
 5.3 Chemical composition of representative nitride and oxynitride phosphors
 5.4 Compounds activated by Eu²⁺
 5.5 Compounds activated by Ce³⁺
 5.6 Features of the crystal structure of nitride and oxynitride phosphors
 5.7 Features of optical transitions of nitride and oxynitride phosphors
 5.8 Conclusion and future trends
 5.9 Acknowledgements
6: Fabrication of nitride LEDs
 Abstract
 6.1 Introduction
 6.2 GaN-based flip-chip LEDs and flip-chip technology
 6.3 GaN FCLEDs with textured micro-pillar arrays
 6.4 GaN FCLEDs with a geometric sapphire shaping structure
 6.5 GaN thin-film photonic crystal (PC) LEDs
 6.6 PC nano-structures and PC LEDs
 6.7 Light emission characteristics of GaN PC TFLEDs
 6.8 Conclusion
7: Nanostructured LEDs
 Abstract
 7.1 Introduction
 7.2 General mechanisms for growth of gallium nitride (GaN) related materials
 7.3 General characterization method
 7.4 Top-down technique for nanostructured LEDs
 7.5 Bottom-up technique for GaN nanopillar substrates prepared by molecular beam epitaxy
 7.6 Conclusion
8: Nonpolar and semipolar LEDs
 Abstract
 8.1 Motivation: limitations of conventional c-plane LEDs
 8.2 Introduction to selected nonpolar and semipolar planes
 8.3 Challenges in nonpolar and semipolar epitaxial growth
 8.4 Light extraction for nonpolar and semipolar LEDs
Part II: Performance of nitride LEDs
9: Efficiency droop in gallium indium nitride (GaInN)/gallium nitride (GaN) LEDs
 Abstract
 9.1 Introduction
 9.2 Recombination models in LEDs
 9.3 Thermal roll-over in gallium indium nitride (GaInN) LEDs
 9.4 Auger recombination
 9.5 High-level injection and the asymmetry of carrier concentration and mobility
 9.6 Non-capture of carriers
 9.7 Polarization fields
 9.8 Carrier delocalization
 9.9 Discussion and comparison of droop mechanisms
 9.10 Methods for overcoming droop
10: Photonic crystal nitride LEDs
 Abstract
10.1 Introduction
10.2 Photonic crystal (PC) technology
10.3 Improving LED extraction efficiency through PC surface patterning
10.4 PC-enhanced light extraction in P-side up LEDs
10.5 Modelling PC-LEDs
10.6 P-side up PC-LED performance
10.7 PC-enhanced light extraction in N-side up LEDs
10.8 Summary
10.9 Conclusions
11: Surface plasmon enhanced LEDs
Abstract
11.1 Introduction
11.2 Mechanism for plasmon-coupled emission
11.3 Fabrication of plasmon-coupled nanostructures
11.4 Performance and outlook
11.5 Acknowledgements
12: Nitride LEDs based on quantum wells and quantum dots
Abstract
12.1 Light-emitting diodes (LEDs)
12.2 Polarization effects in III-nitride LEDs
12.3 Current status of III-nitride LEDs
12.4 Modern LED designs and enhancements
13: Color tunable LEDs
Abstract
13.1 Introduction
13.2 Initial idea for stacked LEDs
13.3 Second-generation LED stack with inclined sidewalls
13.4 Third-generation tightly integrated chip-stacking approach
13.5 Group-addressable pixelated micro-LED arrays
13.6 Conclusions
14: Reliability of nitride LEDs
Abstract
14.1 Introduction
14.2 Reliability testing of nitride LEDs
14.3 Evaluation of LED degradation
14.4 Degradation mechanisms
14.5 Conclusion
15: Chip packaging: encapsulation of nitride LEDs
Abstract
15.1 Functions of LED chip packaging
15.2 Basic structure of LED packaging modules
15.3 Processes used in LED packaging
15.4 Optical effects of gold wire bonding
15.5 Optical effects of phosphor coating
15.6 Optical effects of freeform lenses
15.7 Thermal design and processing of LED packaging
15.8 Conclusion
Part III: Applications of nitride LEDs
16: White LEDs for lighting applications: the role of standards
Abstract
16.1 General lighting applications
16.2 LED terminology
16.3 Copying traditional lamps?
16.4 Freedom of choice
16.5 Current and future trends
17: Ultraviolet LEDs
Abstract
17.1 Research background of deep ultraviolet (DUV) LEDs
17.2 Growth of low threading dislocation density (TDD) AlN layers on sapphire
17.3 Marked increases in internal quantum efficiency (IQE)
17.4 Aluminum gallium nitride (AlGaN)-based DUV-LEDs fabricated on high-quality aluminum nitride (AlN)
17.5 Increase in electron injection efficiency (EIE) and light extraction efficiency (LEE)
17.6 Conclusions and future trends
18: Infrared emitters made from III-nitride semiconductors

Abstract
18.1 Introduction
18.2 High indium (In) content alloys for infrared emitters
18.3 Rare-earth (RE) doped gallium nitride (GaN) emitters
18.4 III-nitride materials for intersubband (ISB) optoelectronics
18.5 ISB devices
18.6 Conclusions
18.7 Acknowledgements

19: LEDs for liquid crystal display (LCD) backlighting

Abstract
19.1 Introduction
19.2 Types of LED LCD backlighting units (BLUs)
19.3 Technical considerations for optical films and plates
19.4 Requirements for LCD BLUs
19.5 Advantages and history of LED BLUs
19.6 Market trends and technological developments
19.7 Optical design
20: LEDs in automotive lighting

Abstract
20.1 Introduction
20.2 Forward lighting
20.3 Signal lighting
20.4 Human factor issues with LEDs
20.5 Energy and environmental issues
20.6 Future trends
20.7 Sources of further information and advice
20.8 Acknowledgements

Index

Order by Fax - using the form below

Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct and select the format(s) you require.

<table>
<thead>
<tr>
<th>Product Name:</th>
<th>Nitride Semiconductor Light-Emitting Diodes (LEDs). Woodhead Publishing Series in Electronic and Optical Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Web Address:</td>
<td>http://www.researchandmarkets.com/reports/2736251/</td>
</tr>
<tr>
<td>Office Code:</td>
<td>SCPL9ORN</td>
</tr>
</tbody>
</table>

Product Formats
Please select the product formats and quantity you require:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>Quantity</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hard Copy (Hard Back):</td>
<td></td>
<td>USD 272 + USD 28 Shipping/Handling</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hard Copy (Paper Back):</td>
<td></td>
<td>USD 272 + USD 28 Shipping/Handling</td>
</tr>
</tbody>
</table>

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in BLOCK CAPITALS

<table>
<thead>
<tr>
<th>Title:</th>
<th>Mr</th>
<th>Mrs</th>
<th>Dr</th>
<th>Miss</th>
<th>Ms</th>
<th>Prof</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Name:</td>
<td>__________________________</td>
<td>Last Name:</td>
<td>__________________________</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Email Address:</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Job Title:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organisation:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Address:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>City:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Postal / Zip Code:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phone Number:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fax Number:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: _______________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World