
Description: Worldwide markets are poised to achieve significant growth as the agricultural robots are used in every aspect of farming, milking, food production, and animal control to implement automated process for the industry.

Weed control is able to achieve crop-yield increases. Robot technology is deploying machines for weed control, promising to improve crop yields. Robots make the crops safer by eliminating or virtually eliminating herbicides. Downstream processing system solutions and robots achieve automation of process. Robots meet stringent hygiene and safety regulations, work tirelessly 24 hours a day, and relieve human workers of physically arduous tasks. Robots contribute to the freshness, variety and quality of food. Projects are ongoing.

High value crops are a target of agricultural robotic development. What could be tastier than a strawberry, perfectly formed, and perfectly ripened? New agricultural robots are able to improve the delivery of consistent quality food, and to implement efficiency in managing food production.

Strawberries are a high profit crop. A new generation of machines has just been born. Strawberry Harvesters with the world's most advanced technology to give maximum performance to a farm. Harvesting robots can optimize the productivity of the farming business. Growers can get the best results in a berry farm using automated process. Automated picking collection systems improve labor productivity, give speed and agility to harvest operations.

The robotic platforms are capable of site-specific spraying. This is targeted spraying only on foliage and selected targets. It can be used for selective harvesting of fruit. The robots detect the fruit, sense its ripeness, then move to grasp and softly detach only ripe fruit.

Agricultural robots address automation of process for agribusiness. The challenge being addressed is to guide farmers towards a new economic model. The aim is to meet demands of a global market. Harvesting is one benefit. Crop-yield increases come from weed control. Robot technology is deploying its machines for weed control, promising to improve crop yields. Robots make the crops safer by eliminating or virtually eliminating herbicides.

Machinery manufacturers and downstream processing industries look for system solutions and robots to achieve automation of process. Robots meet stringent hygiene and safety regulations, work tirelessly 24 hours a day, and relieve human workers of physically arduous tasks. Robots contribute to the freshness, variety and quality of food.

According to Susan Eustis, principal author of the market research study, "Agricultural robotic projects are ongoing. The key to industrial farm robots is keeping costs down. Adapting existing commercial vehicles instead of building new ones is the best way to build viable agricultural robots."

Agricultural robot market size at $817 million in 2013 are anticipated to reach $16.3 billion by 2020, a hefty growth for a nascent market. Agricultural robots are but part of an overall trend toward more automated process for every type of human endeavor. Robots are being used more widely than expected in a variety of sectors, and the trend is likely to continue with robotics becoming as ubiquitous as computer technology over the next 15 years.

Key Topics Covered:
- Agricultural Robots
- Automated harvesting systems
- Autonomous navigation in the fields
- Robotics to automate agricultural operations such as mowing, pruning, seeding, spraying or thinning
- Impact of robots in the fields
- Innovative hmi for agricultural robotics
- Robots in forestry
- New standards for agricultural robotics
- Uav and rpas for agricultural applications
- Cooperative robots in agriculture
- Methods for agricultural robots management
- Autonomous Plowing
- Automatic Harvesting
- Adaptive Robots
- Reinforcement Learning
- Evolution Robotics
- Multiple Agents
- Robotic Agriculture
- Artichoke harvesting
- Agricultural robotics
- Artificial vision
- Outdoor autonomous robot
- Energy Harvesting
- Wireless Nodes
- Microcontroller
- Robotic Harvesters
- Economies of Scale
- Powering Robotic Tractors

Contents:

Agricultural Robot Market Executive Summary

Agricultural Robot Market Driving Forces

Agricultural Robot Target Markets

Robotic Agriculture Trends

Agricultural Robot Market Shares

Agricultural Robot Market Forecasts

1. Market Agricultural Robot Description and Market Dynamics

1.1 Agricultural Markets
1.1.1 Automation Potential In The Agricultural Industry
1.1.2 Robots Find A Place in the Agriculture Industry
1.1.3 Agricultural Robots Make Production More Efficient
1.1.4 Use Of Industrial Robots for Agriculture
1.1.5 Agricultural Robotics and Automation
1.2 RAS Agricultural Robotics and Automation (AgRA) Technical Committee
1.3 Farm Bots Pick, Plant and Drive
1.3.1 Relying On Illegal Immigrants Can Be A Legal Liability
1.4 Nursery & Greenhouse Sector
1.4.1 Harvest Automation Labor Process Automation
1.4.2 The Growing Season Is Also The Shipping Season
1.5 Improving Nursery Efficiency
1.5.1 Small Mobile Robot for Plants and Shrubs
1.6 Agricultural Producers Seek To Improve Operations
1.6.1 Increasing Cows Days Of Grazing
1.7 cRops (Clever Robots for Crops) Robots To Harvest High Value Crops
1.8 European Union Seventh Framework Program
1.9 Strawberries
1.9.1 Strawberries in the US
1.10 Transformational Agricultural Robots

2 Agricultural Robots Market Share and Market Forecasts

2.1 Agricultural Robot Market Driving Forces
2.1.1 Agricultural Robot Target Markets
2.1.2 Robotic Agriculture Trends
2.2 Agricultural Robot Market Shares
2.2.1 Lely Group Revenue
2.2.2 Use Of Standard Industrial Robots In Agriculture
2.2.3 Kuka
2.2.4 Fanuc
2.2.5 Agrobot High Value Crop Robotic Automation
2.2.6 John Deere Autonomous Tractors
2.2.7 Harvest Automation
2.2.8 Vision Robotics
2.3 Agricultural Robot Market Forecasts
2.3.1 Agricultural Robot Market Segments
2.3.2 Agricultural Robotics Key Economic Enabler
2.3.3 High Value Fruit Crops: Strawberries
2.3.4 Nursery And Garden Products
2.3.5 Ornamental Plant Markets
2.3.6 Golf courses Robotic Mowing
2.3.7 Crop Dusting With Remote-Controlled Helicopters
2.3.8 Distributed Robotics Garden
2.3.9 Cultibotics
2.3.10 Agricultural Robot Vision Pruning Systems
2.4 Agricultural Robot Pricing
2.4.1 Harvest Automation
2.4.2 Shibuya Seiko Co. Strawberry Picking Robot
2.4.3 Wall-Ye V.I.N. Robot Functions
2.4.4 iRobot Automated Lawn Mowing
2.5 Agricultural Robots TCO / ROI
2.5.1 Cost Structures and Roles of Agricultural Robots
2.6 Agricultural Robot Regional Analysis
2.6.1 Production of Agricultural Robotics in China
2.6.2 Chinese Agricultural Machinery
2.6.3 Agricultural Robots in Africa

3 Agricultural Robots Product Description
3.1 John Deere Autonomous Tractor
3.1.1 John Deere Crop Spraying
3.2 Kuka
3.2.1 Kuka Robots in the Agricultural Industry
3.2.2 Kuka Robots in the Food Processing Industry
3.2.3 Kuka Automation in Agriculture
3.3 FANUC
3.3.1 Fanuc Vegetable Sorting Robot
3.3.2 FANUC Robodrill DiAS Series
3.4 ABB Robots
3.4.1 ABB Symphony Plus
3.5 Yaskawa
3.5.1 Yaskawa Industrial AC Drives 1/8 thru 1750 Horsepower
3.5.2 Yaskawa Specialty Pump Drives 3/4 thru 500 Horsepower
3.5.3 Yaskawa Servo Systems and Motion Controllers
3.5.4 Motoman Robot Handling and Palletizing Bags of Livestock Feed
3.5.5 Motoman Agriculture Robotics Palletizing Bags Solution
3.5.6 Motoman Robotics Agricultural Robot Palletizing Bags Fixtures / Tooling Details
3.5.7 Motoman Agricultural Grain Bin Dryer Fan Wheels
3.5.8 Motoman Robotics Fixtures/Tooling Details
3.5.9 Motoman Agricultural Irrigation Pipe
3.5.10 Motoman Robotics Fixtures/Tooling Details
3.5.11 Motoman Agricultural Equipment
3.5.12 Motoman Robotics Fixtures/Tooling Details
3.5.13 Motoman Round Baler Pickup Frames for Agricultural Equipment
3.5.14 Motoman Robotics Fixtures/Tooling Details
3.5.15 Motoman Skid Steer Loader Mount Plates
3.5.16 Motoman Bags of Livestock Feed
3.5.17 Motoman Robotics Fixtures/Tooling Details
3.6 Harvest Automation
3.6.1 Harvest Automation Technology
3.6.2 Harvest Automation Behavior-Based Robotics
3.7 Robotic Harvesting
3.7.1 Robotic Harvesting Strawberry Harvester
3.8 Agrobot SW 6010
3.8.1 Agrobot AGB: Harvesting High Level System
3.8.2 Agrobot AG Vision
3.9 Blue River Technology
3.9.1 Blue River Precision Lettuce Thinning - 40/42" Beds
3.9.2 Blue River Precision Lettuce Thinning - 80/84" Beds
3.9.3 Lettuce Bot, Blue River Technology
3.10 cRops (Clever Robot for Crops)
3.10.1 cRops European Project, Made Up Of Universities And Labs
3.11 Jaybridge Robotics Agriculture
3.11.1 Jaybridge Robotics Kinze Partnering, Autonomous Vehicle Row Crop Harvesting
3.11.2 Jaybridge Software Expertise
3.12 Nano Ganesh
3.13 Aqua Spy
3.14 8 Villages
3.15 IBM / Bari Fishing Market App
3.16 M Farm
3.17 Sustainable Harvest
3.18 Tractor Harvesting
3.19 Spensa Technology Pest Control
3.20 The Pebble Watch
3.21 Louisiana State University AgBot
3.21.1 AgBot Uses Autonomous, Advanced GPS System
3.21.2 Agbot Small Robots Versatility
3.21.3 Delivery Robot
3.22 Harvard Robobee
3.22.1 Harvard Robobee Practical Applications
3.22.2 Harvard Robobee Vision and Aims
3.22.3 Harvard Robobee Body, Brain, and Colony
3.22.4 Harvard Robobee Body
3.22.5 Harvard Robobee Flexible Insect Wings And Flight Stability In Turbulent Airflow
3.22.6 Harvard Robobee Sensor Networks
3.22.7 Harvard Robobee Colony
3.22.8 Harvard Robobee Sensor Network Development
3.23 iRobot's Automatic Lawn Mower
3.24 MIT Autonomous Gardener Equipment Mounted On The Base of a Roomba
3.25 Carnegie Mellon University's National Robotics Engineering Center
3.25.1 Carnegie Mellon. Self-Guided Farm Equipment
3.26 Cesar the LettuceBot
3.27 Universidad Politécnica de Madrid Rosphere
3.27.1 Rosphere Spherical Shaped Robot
3.28 Shibuya Seiko Co.
3.28.1 Shibuya Seiko Co. Strawberry Picking Robot
3.28.2 Shibuya Seiko Robot Can Pick Strawberry Fields
3.29 University of California, Davis Robots For Harvesting Strawberries
3.30 Wall-Ye V.I.N. Robot
3.30.1 Wall-Ye V.I.N. Robot Functions
3.30.2 Wall-Ye V.I.N. Robot Security System
3.30.3 Wall-Ye V.I.N. Robot Prunes 600 Vines Per Day
3.31 Vision Robotics
3.31.1 Vision Robotics Automated Tractors
3.32 Nobchui Autonomous Tractor
3.32.1 Professor Nobchui Agricultural Tractor Robot Uses Navigation Sensor Called AGI-3 GPS Compass Made by TOPCON
3.32.2 Professor Nobchui Agricultural Tractor Robot Mapping System
3.32.3 Nobchui Autonomous Tractor Robot Management Systems
3.33 Microsoft Agricultural Robot Software
3.34 Australian Centre for Field Robotics Herder Robot
3.34.1 Robotic Rover Herds Cows
3.35 Chinese Agricultural Robots
3.36 Oracle Robot
3.37 3D Robotics
3.38 Lely Automatic Milking Robots
3.38.1 Lely Astronaut Milking Robots
3.38.2 Lely Concept and Management
3.38.3 Lely Correct Feed Management
3.38.4 Lely Milk Robots At Large Dairy Farms
3.38.5 Lely Free Cow Traffic
3.39 Kyoto University Tomato Harvesting Robot
3.40 Yamaha Crop Dusting Drones
3.41 RHEA Robot Fleets for Accuracy
3.41.1 RHEA Synchronized Weeding
3.41.2 Synchronized Spraying
3.42 Precise Path Robotics

4. Agricultural Robots Technology

4.1 Harvest Automation Proprietary Sensor Technology
4.1.1 Harvest Automation Robot System Architecture
4.1.2 Harvest Automation Technology
4.1.3 Behavior-Based Robotics
4.1.4 Proprietary Sensor Technology
4.1.5 System Design & Architecture
4.2 Welding Robots
4.3 Material Handling Robots:
4.4 Plasma Cutting Robots:
4.5 Agricultural Robotics and Automation Scope:
4.5.1 IEEE Standards Initiatives
4.5.2 Delft Robotics Institute
4.6 Robotics and Automation
4.7 An Electronic System Improves Different Agriculture Processes

5 Agricultural Robots Company Description

5.1 ABB Robotics
5.1.1 ABB Revenue
5.1.2 ABB Strategy
5.1.3 ABB Global Leader In Power And Automation Technologies
5.1.4 ABB and Validus DC Systems DC Power Infrastructure Equipment
5.1.5 ABB / Validus DC Systems DC Power Infrastructure Equipment
5.1.6 ABB Technology
5.1.7 ABB Global Lab Power
5.1.8 ABB Global Lab Automation
5.2 Agile Planet
5.3 AgRA: RAS Agricultural Robotics and Automation (AgRA
5.4 Agrobot
5.4.1 Agrobot Innovation and Technology for Agribusiness
5.5 Astronaut
5.6 Australian Centre for Field Robotics
5.7 Blue River Technology
5.7.1 Blue River / Khosla Ventures
5.8 CNH Industrial / Fiat / Case IH
5.8.1 Case IH Customers Work Directly With Design Engineers
5.9 cRops
5.10 Fanuc
5.10.1 FANUC Corporation
5.10.2 Fanuc Revenue
5.11 Georgia Tech Agricultural Robots
5.12 Google
5.12.1 Google / Boston Dynamics
5.12.2 Boston Dynamics LS3 - Legged Squad Support Systems
5.12.3 Boston Dynamics CHEETAH - Fastest Legged Robot
5.12.4 Boston Dynamics Atlas - The Agile Anthropomorphic Robot
5.12.5 Boston Dynamics BigDog
5.12.6 Boston Dynamics LittleDog - The Legged Locomotion Learning Robot
5.12.7 Google Robotic Division
5.12.8 Google Self-Driving Car
5.12.9 Google Cars Address Vast Majority Of Vehicle Accidents Due To Human Error
5.12.10 Google Business
5.12.11 Google Corporate Highlights
5.12.12 Google Search
5.12.13 Google Revenue
5.12.14 Google Second Quarter 2013 Results
5.12.15 Google Revenues by Segment and Geography
5.12.16 Google / Motorola Headcount
5.12.17 Google / Motorola
5.13 Harvard Robobee
5.13.1 Harvard Robobee Funding
5.13.2 Harvard Robobee Main Area Of Research
5.13.3 Harvard Robobee OptRAD is used as an Optimizing Reaction-Advection-Diffusion system.
5.13.4 Harvard Robobee The Team
5.14 Harvest Automation
5.14.1 Harvest Automation Ornamental Horticulture
5.14.2 Harvest Automation M Series C Financing
5.14.3 Harvest Robotic Solutions For The Agricultural Market
5.14.4 Harvest Automation Robots
5.15 IBM
5.15.1 IBM Strategy
5.15.2 IBM Business Partners
5.15.3 IBM Messaging Extension for Web Application Pattern
5.15.4 IBM MobileFirst
5.15.5 IBM Business Analytics and Optimization Strategy
5.15.6 IBM Growth Market Initiatives
5.15.7 IBM Business Analytics and Optimization
5.15.8 IBM Strategy
5.15.9 IBM Smarter Planet
5.15.10 IBM Cloud Computing
5.15.11 IBM Business Model
5.15.12 IBM Business Revenue Segments And Capabilities
5.16 iRobot
5.16.1 iRobot Home Robots:
5.16.2 iRobot Defense and Security: Protecting Those in Harm's Way
5.16.3 iRobot Role In The Robot Industry
5.16.4 iRobot SPARK (Starter Programs for the Advancement of Robotics Knowledge)
5.16.5 iRobot Revenue
5.16.6 iRobot Acquires Evolution Robotics, Inc.
5.16.7 iRobot / Evolution Robotics
5.17 Jaybridge Robotics
5.17.1 Jaybridge Robotics Software Solutions
5.17.2 Jaybridge Systems Integration for Autonomous Vehicles
5.17.3 Jaybridge Robotics Rigorous Quality Processes
5.17.4 Jaybridge Robotics Professional, Experienced Team
5.17.5 Jaybridge Robotics Seamless Working Relationship with Client Teams
5.18 Kuka
5.18.1 Kuka Revenue
5.18.2 Kuka Competition
5.18.3 Kuka Innovative Technology
5.18.4 Kuka Well Positioned With A Broad Product Portfolio In Markets With Attractive Growth Prospects
5.18.5 Kuka Strategy
5.18.6 Kuka Corporate Policy
5.19 KumoTek
5.19.1 KumoTek Robotics Software Specialists
5.20 Kyoto University
5.21 Lely
5.21.1 Lely Group Business Concepts
5.21.2 Lely Group Revenue
5.22 Millennial Net
5.22.1 Millennial Net Wireless Sensor Network:
5.22.2 Millennial Net 1000-Node MeshScape GO Wireless Sensor Network (WSN) Agricultural Sensors
5.22.3 Millennial Net’s MeshScape GO WSN Technology
5.23 National Agriculture and Food Research Organization
5.23.1 NARO, a Japanese Incorporated Administrative Agency
5.23.2 National Agriculture and Food Research Organization (NARO) third mid-term plan (from 2011 to 2015)
5.23.3 National Agriculture and Food Research Organization Stable Food Supply
5.23.4 National Agriculture and Food Research Organization Development For Global-Scale Issues And Climate Change
5.23.5 National Agriculture and Food Research Organization Development To Create Demand For New Food Products
5.23.6 National Agriculture and Food Research Organization Development For Utilizing Local Agricultural Resources
5.23.7 Japanese National Agriculture and Food Research Organization
5.24 Ossian Agro Automation / Nano Ganesh
5.25 Precise Path Robotics
5.26 Robotic Harvesting
5.27 Sicily Tractor Harvesting
5.28 Shibuya Seiki
5.28.1 Shibuya Kogyo Pharmaceutical Application Examples
5.28.2 Shibuya Kogyo Robotic System For Handling Soft Infusion Bags
5.28.3 Shibuya Kogyo Robotic Cell Culture System "CellPRO"
5.28.4 Shibuya Kogyo Robotic System For Leaflet & Spoon Placement
5.28.5 Shibuya Kogyo Robotic Collating System
5.28.6 Shibuya Kogyo Automated Aseptic Environmental Monitoring System
5.29 Universidad Politécnica de Madrid
5.30 University of California, Davis
5.31 Wall-Ye V.I.N. Robot
5.32 Yamaha
5.33 Yaskawa
5.33.1 Yaskawa Revenue
5.33.2 Yaskawa Business
5.33.3 YASKAWA Electric Motion Control
5.33.4 YASKAWA Electric Robotics
5.33.5 YASKAWA Electric System Engineering
5.33.6 YASKAWA Electric Information Technology
5.33.7 Yaskawa / Motoman
5.34 Agricultural Robotic Research Labs
5.34.1 Outdated links
5.34.2 Agricultural Robotic Companies
5.34.3 IEEE Agricultural Technical Committee
5.34.4 Agricultural Robotic Conferences
5.34.5 Agricultural Robotic Publications
5.34.6 Selected VC Funding In Robotics

List of Tables

Tables and Figures

Figure ES-1 Agrobot Strawberry Picker
Table ES-2 Agricultural Robot Market Driving Forces
Table ES-3 Agricultural Robot Target Markets
Table ES-4 Robotic Agricultural Trends
Table ES-5 Agriculture Robotic Activities
Table ES-6 Market Forces for Agricultural Modernization
Table ES-7 Robotics – State of the Art Advantages
Table ES-8 Agricultural Robot Challenges
Figure ES-9 Agricultural Robot Market Shares, Dollars, Worldwide, 2013
<table>
<thead>
<tr>
<th>Figure ES-10 Agricultural Robot Market Forecasts Dollars, Worldwide, 2014-2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1-1 Aspects of Agricultural Sector Modernization</td>
</tr>
<tr>
<td>Figure 1-2 Agricultural Robotics Positioned To Meet The Increasing Demands For Food And Bioenergy</td>
</tr>
<tr>
<td>Source: John Deere.</td>
</tr>
<tr>
<td>Figure 1-3 Autonomous Orchard Vehicle</td>
</tr>
<tr>
<td>Figure 1-4 Automated Picker Machine</td>
</tr>
<tr>
<td>Table 1-5 Nursery Robot Benefits</td>
</tr>
<tr>
<td>Figure 1-6 Cows Grazing</td>
</tr>
<tr>
<td>Figure 1-7 European Union Seventh Framework Program cRops (Clever Robots for Crops) Focus On Harvesting High Value Crops</td>
</tr>
<tr>
<td>Figure 1-8 Transformational Agricultural Robots</td>
</tr>
<tr>
<td>Figure 2-1 Agrobot Strawberry Picker</td>
</tr>
<tr>
<td>Table 2-2 Agricultural Robot Market Driving Forces</td>
</tr>
<tr>
<td>Table 2-3 Agricultural Robot Target Markets</td>
</tr>
<tr>
<td>Table 2-4 Robotic Agricultural Trends</td>
</tr>
<tr>
<td>Table 2-5 Agriculture Robotic Activities</td>
</tr>
<tr>
<td>Table 2-6 Market Forces for Agricultural Modernization</td>
</tr>
<tr>
<td>Table 2-7 Robotics – State of the Art Advantages</td>
</tr>
<tr>
<td>Table 2-8 Agricultural Robot Challenges</td>
</tr>
<tr>
<td>Figure 2-9 Agricultural Robot Market Shares, Dollars, Worldwide, 2013</td>
</tr>
<tr>
<td>Table 2-10 Agricultural Robot Market Shares, Dollars, Worldwide, 2013</td>
</tr>
<tr>
<td>Figure 2-11 Agrobot Strawberry Picker</td>
</tr>
<tr>
<td>Figure 2-12 John Deere Autonomous Tractors</td>
</tr>
<tr>
<td>Figure 2-13 Agricultural Robot Market Forecasts Dollars, Worldwide, 2014-2020</td>
</tr>
<tr>
<td>Table 2-14 Agricultural Robot Market Forecast, Shipments, Dollars, Worldwide, 2014-2020</td>
</tr>
<tr>
<td>Table 2-16 Agricultural Robot Market Industry Segments, Cow Milking and Barn Systems, Strawberries and High Value Crops, Wheat, Rice, Corn Harvesting, Grape Pruning and Harvesting, Nursery Management, Golf Course and Lawn Mowing, Drone Crop Dusting Segments, Percent, Worldwide, 2014-2020</td>
</tr>
<tr>
<td>Figure 2-17 Multiple Small Intelligent Machines Replace Large Manned Tractors</td>
</tr>
<tr>
<td>Table 2-18 Agricultural Robots for Ornamental Plant Handling Benefits</td>
</tr>
<tr>
<td>Figure 2-19 UC Davis Using Yahama Helicopter Drones For Crop Dusting</td>
</tr>
<tr>
<td>Figure 2-20 Yahama Crop Duster</td>
</tr>
<tr>
<td>Figure 2-21 Distributed Robotics Garden</td>
</tr>
<tr>
<td>Figure 2-22 Modernized Agriculture Telegarden, As Installed At Ars Electronica</td>
</tr>
<tr>
<td>Table 2-23 Voluntary Cow Traffic Benefits</td>
</tr>
<tr>
<td>Table 2-24 Cow Traffic System Cubicles ROI Metrics</td>
</tr>
<tr>
<td>Table 2-25 Lely Example of Herd Size and Robots / Farm Worker</td>
</tr>
<tr>
<td>Table 2-26 Roles of Agricultural Robots</td>
</tr>
<tr>
<td>Figure 2-27 Cost Structures and Roles of Agricultural Robots</td>
</tr>
<tr>
<td>Figure 2-28 Agricultural Robotic Regional Market Segments, 2013</td>
</tr>
<tr>
<td>Table 2-29 Agricultural Robot Regional Market Segments, 2013</td>
</tr>
<tr>
<td>Figure 3-1 John Deere Autonomous Tractors</td>
</tr>
<tr>
<td>Figure 3-2 John Deere Autonomous Tractor Flexible Uses</td>
</tr>
<tr>
<td>Figure 3-3 John Deere Crop Spraying</td>
</tr>
<tr>
<td>Figure 3-4 Kuka Agricultural Robots</td>
</tr>
<tr>
<td>Figure 3-5 Kuka Material Handling Robots</td>
</tr>
<tr>
<td>Figure 3-6 Kuka Industry Standard Robots Used in Agriculture</td>
</tr>
<tr>
<td>Figure 3-7 Kuka Welding Robots in the Agricultural Industry</td>
</tr>
<tr>
<td>Figure 3-8 Kuka Robots in the Agricultural Industry</td>
</tr>
<tr>
<td>Figure 3-9 Kuka Robots in the Food Processing Industry</td>
</tr>
<tr>
<td>Figure 3-10 Kuka Agricultural Robots</td>
</tr>
<tr>
<td>Figure 3-11 Kuka Plasma Cutting Robot</td>
</tr>
<tr>
<td>Figure 3-12 Fanuc M-3iA Robots Sorting Boxes</td>
</tr>
<tr>
<td>Figure 3-13 FANUC Robodrill Dia5 Series</td>
</tr>
<tr>
<td>Figure 3-14 FANUC Welding Robots</td>
</tr>
<tr>
<td>Figure 3-15 FANUC Material Handling Robots</td>
</tr>
<tr>
<td>Figure 3-16 FANUC Plasma Cutting Robot</td>
</tr>
<tr>
<td>Figure 3-17 ABB Welding Robots</td>
</tr>
<tr>
<td>Figure 3-18 ABB Material Handling Robots</td>
</tr>
<tr>
<td>Figure 3-19 Yaskawa Plasma Cutting Robot</td>
</tr>
</tbody>
</table>
Figure 3-20 Yaskawa Robots Used in Agriculture
Figure 3-21 Yaskawa Industrial AC Drives 1/8 thru 1750 Horsepower
Figure 3-22 Yaskawa Specialty Pump Drives 3/4 thru 500 Horsepower
Figure 3-23 Motoman Robot Handling and Palletizing Bags of Livestock Feed
Table 3-24 Motoman Robot Handling and Palletizing Bags of Livestock Feed Project Challenges
Table 3-25 Motoman Agriculture Robotics Palletizing Bags Solution
Table 3-26 Motoman Agricultural Grain Bin Dryer Fan Wheels Project Challenges
Table 3-27 Motoman Agricultural Grain Bin Dryer Fan Wheels Robotics Solution
Figure 3-28 Motoman Agricultural Irrigation Pipe
Table 3-29 Motoman Agricultural Irrigation Pipe Project Challenges
Table 3-30 Motoman Agricultural Irrigation Pipe Robotics Solution
Figure 3-31 Motoman Agricultural Equipment
Table 3-32 Motoman Agricultural Equipment Project Challenges
Table 3-33 Motoman Agricultural Equipment Robotics Solution
Figure 3-34 Motoman Round Baler Pickup Frames for Agricultural Equipment
Table 3-35 Motoman Round Baler Pickup Frames for Agricultural Equipment Project Challenges
Table 3-36 Motoman Round Baler Pickup Frames for Agricultural Equipment Robotics Solution
Figure 3-37 Motoman Skid Steer Loader Mount Plates
Table 3-38 Motoman Skid Steer Loader Mount Plates Project Challenges
Table 3-39 Motoman Skid Steer Loader Mount Plates Robotics Solution
Figure 3-40 Motoman Bags of Livestock Feed
Table 3-41 Motoman Bags of Livestock Feed Project Challenges
Table 3-42 Motoman Bags of Livestock Feed Robotics Solution
Figure 3-43 Harvest Automation Shrub Robot
Figure 3-44 Harvest Automation Shrub Robot In Garden
Figure 3-45 Harvest Automation Robot Provides Marketplace Sustainability
Table 3-46 Harvest Automation Shrub Robot Features:
Table 3-47 Harvest Automation Shrub Robot Functions:
Figure 3-48 Robotic Harvesting of Strawberries
Figure 3-49 Agrobot SW 6010
Figure 3-50 Agrobot AGB: Harvesting High Level System
Figure 3-51 Agrobot AG Vision
Figure 3-52 Blue River Technology Agricultural Robot
Figure 3-53 Blue River Precision Lettuce Thinning Agricultural Robot
Table 3-54 Blue River Technology Agricultural Robot Functions
Figure 3-55 Blue River Precision Lettuce Thinning - 80/84" beds
Table 3-56 cRops Robotic Platform Functions
Table 3-57 cRops Robot System European Project Supporters
Figure 3-58 cRops Robot System
Figure 3-59 cRops Robot Target System
Figure 3-60 Jaybridge Robotics Driverless Tractor
Figure 3-61 IBM / Bari Fishing Market App
Figure 3-62 IBM / Bari Real Time Fishing Market App
Figure 3-63 IBM / Bari Fishing Market Need Matching App
Figure 3-64 LSU AgBot
Table 3-65 Harvard Robobee Robot Applications
Table 3-66 Nature-Inspired Robotic Research Aims
Figure 3-67 Robobee Boby, Brain, Colony
Figure 3-68 Harvard Robobee Propulsive Efficiency
Figure 3-69 Harvard Robobee Studies of Stability And Control In Unsteady, Structured Wakes
Table 3-70 Harvard Robobee Sensor Networks
Figure 3-71 Harvard Robobee Computationally-Efficient Control System
Table 3-72 Harvard Robobee Sensor Network Design Challenges
Table 3-73 Harvard Robobee Challenges In Development Of A Sensor Network
Table 3-74 Harvard Robobee Sensor Network Context Challenges
Table 3-75 Harvard Robobee Sensor Network Elements
Table 3-76 Harvard Robobee Sensor Network Limitations
Table 3-77 Harvard Robobee Software Language Limitations
Table 3-78 Harvard Robobee Software Language Current Efforts
Figure 3-79 Robomow RL850 Automatic Lawn Mower
Figure 3-80 MIT smart gardener robot
Table 5-8 Agrobot Innovation and Technology for Agribusiness
Figure 5-9 Agrobot Innovation and Technology for Agribusiness
Table 5-10 cRops technology Functions
Table 5-11 cRops Intelligent Tools
Table 5-12 cRops Target Markets
Table 5-13 cRops Robotic Platform Customized Automated Processes
Figure 5-15 Fanuc Revenue
Figure 5-16 Fanuc Revenue
Figure 5-17 Boston Dynamic LS3
Figure 5-18 Boston Dynamic CHEETAH
Figure 5-19 Boston Dynamic Atlas
Figure 5-20 Boston Dynamic BigDog
Figure 5-21 Boston Dynamics LittleDog -
Table 5-22 Google Autonomous Vehicles Technology
Table 5-23 Harvard Robobee Project Characteristics
Figure 5-24 Harvard Robobee Kilobot Robot Group
Table 5-25 Harvest Automation Robot Navigation
Table 5-26 Harvest Automation Robot Sensor Network Functions
Table 5-27 IBM Systems Target Industries
Table 5-28 Jaybridge Robotics Software Solutions
Table 5-29 Jaybridge Robotics Software Functions
Figure 5-30 Kuka Positioning with Smart Tools
Figure 5-31 Lely's Astronaut A4 Milking Robot
Table 5-32 Millenial Net's MeshScape System Functions
Table 5-33 MeshScape GO Deployment Components:
Table 5-34 National Agriculture and Food Research Organization (NARO) Plan Goals
Figure 5-35 Precise Path Robotics
Figure 5-36 Sicily Small Tractor Used For Manual Artichoke Harvesting
Figure 5-37 Shibuya Kogyo Robotic System For Leaflet & Spoon Placement
Figure 5-38 Shibuya Kogyo Robotic Collating System
Figure 5-39 Shibuya Kogyo Automated Aseptic Environmental Monitoring System
Table 5-40 Universidad Politécnica de Madrid Projects
Figure 5-41 UC Davis Using Yahama Helicopter Drones For Crop Dusting
Figure 5-42 Yamaha Crop Dusting Initiatives
Figure 5-43 YASKAWA Electric Group Businesses

Ordering:

Order Online - [http://www.researchandmarkets.com/reports/2738856/](http://www.researchandmarkets.com/reports/2738856/)

Order by Fax - using the form below

Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct and select the format(s) you require.

Web Address: http://www.researchandmarkets.com/reports/2738856/
Office Code: SCBRO32J

Product Formats
Please select the product formats and quantity you require:

<table>
<thead>
<tr>
<th>Format</th>
<th>Quantity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronic (PDF) - Single User</td>
<td></td>
<td>USD 3900</td>
</tr>
<tr>
<td>Electronic (PDF) - Enterprisewide</td>
<td></td>
<td>USD 7800</td>
</tr>
</tbody>
</table>

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title: [ ] Mr [ ] Mrs [ ] Dr [ ] Miss [ ] Ms [ ] Prof
First Name: ___________________________ Last Name: ___________________________
Email Address: * ___________________________
Job Title: ___________________________
Organisation: ___________________________
Address: ___________________________
City: ___________________________
Postal / Zip Code: ___________________________
Country: ___________________________
Phone Number: ___________________________
Fax Number: ___________________________

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: ____________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World