Description: Formulation science plays an important role in colloid and physical chemistry, but also in analytical chemistry and chemical engineering. For the design of such everyday products as detergents, cosmetics, paints, pharmaceuticals, food and others, different formulation techniques are needed.

Written by one of the most experienced authors and leading scientists in the field worldwide, this is the first truly comprehensive coverage of this exciting topic. Starting with a general introduction, this one-stop reference presents the science and technology behind the formulation of disperse systems, such as emulsions, suspensions, and foams, while also including many practical examples.

With its unified concept, this book is indispensable for chemists in industry, chemical engineers, the pharmaceutical industry, polymer, surface and physical chemists, as well as food technologists, materials scientists and those working in the paints and coatings industry.

Contents:

Preface XVII
1 General Introduction 1
 1.1 Suspensions 1
 1.2 Latexes 2
 1.3 Emulsions 2
 1.4 Suspoemulsions 3
 1.5 Multiple Emulsions 3
 1.6 Nanosuspensions 4
 1.7 Nanoemulsions 4
 1.8 Microemulsions 5
 1.9 Pigment and Ink Dispersions 5
 1.10 Foams 5
References 9
2 Surfactants Used in Formulation of Dispersions 11
 2.1 General Classification of Surface–Active Agents 12
 2.1.1 Anionic Surfactants 13
 2.1.1.1 Carboxylates 13
 2.1.1.2 Sulphates 14
 2.1.1.3 Sulphonates 15
 2.1.1.4 Phosphate–Containing Anionic Surfactants 16
 2.1.2 Cationic Surfactants 16
2.1.3 Amphoteric (Zwitterionic) Surfactants 17
2.1.4 Nonionic Surfactants 18
2.1.4.1 Alcohol Ethoxylates 19
2.1.4.2 Alkyl Phenol Ethoxylates 19
2.1.4.3 Fatty Acid Ethoxylates 20
2.1.4.4 Sorbitan Esters and Their Ethoxylated Derivatives (Spans and Tweens) 20
2.1.4.5 Ethoxylated Fats and Oils 21
2.1.4.6 Amine Ethoxylates 21
2.1.4.7 Amine Oxides 21
2.1.5 Specialty Surfactants 22
2.1.5.1 Fluorocarbon and Silicone Surfactants 22
2.1.5.2 Gemini Surfactants 23
2.1.5.3 Surfactants Derived from Monosaccharides and Polysaccharides 23
References 24

3 Physical Chemistry of Surfactant Solutions and the Process of Micellisation 27
3.1 Thermodynamics of Micellisation 33
3.1.1 Kinetic Aspects 34
3.1.2 Equilibrium Aspects: Thermodynamics of Micellisation 35
3.2 Enthalpy and Entropy of Micellisation 37
3.2.1 Driving Force for Micelle Formation 38
3.2.2 Micellisation in Surfactant Mixtures (Mixed Micelles) 40
References 43

4 Dispersants and Polymeric Surfactants 45
4.1 Solution Properties of Polymeric Surfactants 46
4.2 General Classification of Polymeric Surfactants 50
4.3 Polyelectrolytes 53
References 54

5 Adsorption of Surfactants at the Air/Liquid, Liquid/Liquid, and Solid/Liquid Interfaces 55
5.1 Introduction 55
5.2 Adsorption of Surfactants at the Air/Liquid (A/L) and Liquid/Liquid (L/L) Interfaces 56
5.3 The Gibbs Adsorption Isotherm 57
5.4 Equation of State Approach 60
5.5 The Langmuir, Szyszkowski, and Frumkin Equations 62
5.6 Interfacial Tension Measurements 63
5.6.1 The Wilhelmy Plate Method 63
5.6.2 The Pendant Drop Method 64
5.6.3 The Du Nouy’s Ring Method 64
5.6.4 The Drop Volume (Weight) Method 65
5.6.5 The Spinning Drop Method 65
5.7 Adsorption of Surfactants at the Solid/Liquid (S/L) Interface 66
5.7.1 Adsorption of Ionic Surfactants on Hydrophobic Surfaces 68
5.7.2 Adsorption of Ionic Surfactants on Polar Surfaces 71
5.7.3 Adsorption of Nonionic Surfactants 72

References 74

6 Adsorption of Polymeric Surfactants at the Solid/Liquid Interface 77
6.1 Theories of Polymer Adsorption 80
6.2 Experimental Techniques for Studying Polymeric Surfactant Adsorption 88
6.2.1 Measurement of the Adsorption Isotherm 88
6.2.2 Measurement of the Fraction of Segments, p 89
6.3 Determination of Segment Density Distribution (z) and Adsorbed Layer Thickness, h 89
6.4 Examples of the Adsorption Isotherms of Nonionic Polymeric Surfactants 92
6.4.1 Adsorbed Layer Thickness Results 96
6.4.2 Kinetics of Polymer Adsorption 98

References 98

7 Colloid Stability of Disperse Systems Containing Electrical Double Layers 101
7.1 Origin of Charge on Surfaces 101
7.1.1 Surface Ions 101
7.1.2 Isomorphic Substitution 102
7.2 Structure of the Electrical Double Layer 103
7.2.1 Diffuse Double layer (Gouy and Chapman) 103
7.3 Stern–Grahame Model of the Double Layer 104
7.4 Distinction between Specific and Nonspecific Adsorbed Ions 104
7.5 Electrical Double Layer Repulsion 105
7.6 van der Waals Attraction 106
7.7 Total Energy of Interaction 109
7.7.1 Deryaguin Landau Verwey Overbeek (DLVO) Theory 109
7.8 Flocculation of Suspensions 111
7.9 Criteria for Stabilisation of Dispersions with Double Layer Interaction 113
References 114

8 Stability of Disperse Systems Containing Adsorbed Nonionic Surfactants or Polymers: Steric Stabilisation 115
8.1 Introduction 115
8.2 Interaction between Particles Containing Adsorbed Nonionic and Polymeric Surfactant Layers (Steric Stabilisation) 116
8.3 Mixing Interaction G\text{mix} 117
8.4 Elastic Interaction Gel 118
8.5 Total Energy of Interaction 119
8.6 Criteria for Effective Steric Stabilisation 120
8.7 Flocculation of Sterically Stabilised Dispersions 121
8.7.1 Weak Flocculation 121
8.7.2 Incipient Flocculation 121
8.7.3 Depletion Flocculation 122
References 123

9 Formulation of Solid/Liquid Dispersions (Suspensions) 125
9.1 Introduction 125
9.2 Preparation of Suspensions 126
9.3 Condensation Methods: Nucleation and Growth 126
9.4 Dispersion Methods 128
9.4.1 Wetting of Powders by Liquids 129
9.4.2 Structure of the Solid/Liquid Interface and the Electrical Double Layer 131
9.4.2.1 Electrical Double Layer Repulsion 132
9.4.2.2 van der Waals Attraction 132
9.4.2.3 Total Energy of Interaction 133
9.4.2.4 Criteria for Stabilisation of Suspensions with Double Layer Interaction 135
9.4.2.5 Electrokine

9.4.2.6 Calculation of the Zeta–Potential 136
9.4.2.7 Measurement of the Zeta–Potential 137
9.4.3 Dispersing Agents for Formulation of Suspensions 139
9.4.4 Adsorption of Surfactants at the Solid/Liquid Interface 139
9.4.5 Steric Stabilisation of Suspensions 141
9.4.6 Flocculation of Sterically Stabilised Suspensions 143
9.4.7 Properties of Concentrated Suspensions 144
9.4.8 Characterisation of Suspensions and Assessment of their Stability 149
9.4.8.1 Optical Microscopy 150
9.4.8.2 Electron Microscopy 151
9.4.8.3 Confocal Laser Scanning Microscopy 151
9.4.8.4 Scattering Techniques 151

9.5 Bulk Properties of Suspensions 152
9.5.1 Rheological Measurements 152
9.5.2 Sedimentation of Suspensions and Prevention of Formation of Dilatant Sediments (Clays) 153
9.5.3 Prevention of Sedimentation and Formation of Dilatant Sediments 156

References 159

10 Formulation of Liquid/Liquid Dispersions (Emulsions) 161
10.1 Introduction 161
10.1.1 Creaming and Sedimentation 161
10.1.2 Flocculation 162
10.1.3 Ostwald Ripening (Disproportionation) 162
10.1.4 Coalescence 163
10.1.5 Phase Inversion 163
10.2 Industrial Applications of Emulsions 163
10.3 Physical Chemistry of Emulsion Systems 164
10.3.1 The Interface (Gibbs Dividing Line) 164
10.3.2 Thermodynamics of Emulsion Formation and Breakdown 165
10.3.3 Interaction Energies (Forces) between Emulsion Droplets and Their Combinations 166
10.3.3.1 van der Waals Attractions 166
10.3.3.2 Electrostatic Repulsion 167
10.3.3.3 Steric Repulsion 170
10.4 Adsorption of Surfactants at the Liquid/Liquid Interface 172
10.4.1 Mechanism of Emulsification 174
10.4.2 Methods of Emulsification 175
10.4.3 Role of Surfactants in Emulsion Formation 177
10.4.4 Role of Surfactants in Droplet Deformation 179
10.5 Selection of Emulsifiers 183
10.5.1 The Hydrophilic Lipophilic Balance (HLB) Concept 183
10.5.2 The Phase Inversion Temperature (PIT) Concept 186
10.6 Creaming or Sedimentation of Emulsions 187
10.6.1 Creaming or Sedimentation Rates 188
10.6.1.1 Very Dilute Emulsions (< 0.01) 188
10.6.1.2 Moderately Concentrated Emulsions (0.2 < < 0.1) 189
10.6.1.3 Concentrated Emulsions (> 0.2) 189
10.6.2 Prevention of Creaming or Sedimentation 190
10.6.2.1 Matching the Density of Oil and Aqueous Phases 190
10.6.2.2 Reduction of Droplet Size 190
10.6.2.3 Use of Thickeners 190
10.6.2.4 Controlled Flocculation 191
10.6.2.5 Depletion Flocculation 191
10.7 Flocculation of Emulsions 192
10.7.1 Mechanism of Emulsion Flocculation 193
10.7.1.1 Flocculation of Electrostatically Stabilised Emulsions 193
10.7.1.2 Flocculation of Sterically Stabilised Emulsions 195
10.8 General Rules for Reducing (Eliminating) Flocculation 196
10.8.1 Charge-Stabilised Emulsions (e.g., Using Ionic Surfactants) 196
10.8.2 Sterically Stabilised Emulsions 196
10.9 Ostwald Ripening 196
10.10 Emulsion Coalescence 198
10.10.1 Rate of Coalescence 200
10.11 Phase Inversion 200

References 201
11 Formulation of Suspoemulsions (Mixtures of Suspensions and Emulsions) 203

11.1 Introduction 203

11.2 Suspoemulsions in Paints 204

11.2.1 Suspoemulsions in Sunscreens and Colour Cosmetics 207

11.3 Suspoemulsions in Agrochemicals 219

11.3.1 Model Suspoemulsion of Polystyrene Latex and Isoparaffinic Oil stabilised with Synperonic PE (PEO
PPO PEO A–B–A Block Copolymer) 225

11.3.2 Model Systems of Polystyrene Latex with Grafted PEO Chains and Hexadecane Emulsions 227

References 230

12 Formulation of Multiple Emulsions 231

12.1 Introduction 231

12.2 Preparation of Multiple Emulsions 232

12.3 Types of Multiple Emulsions 233

12.4 Breakdown Processes of Multiple Emulsions 233

12.5 Factors Affecting Stability of Multiple Emulsions, and Criteria for Their Stabilisation 235

12.6 General Description of Polymeric Surfactants 237

12.7 Interaction between Oil or Water Droplets Containing an Adsorbed Polymeric Surfactant: Steric
Stabilisation 238

12.8 Examples of Multiple Emulsions Using Polymeric Surfactants 246

12.9 Characterisation of Multiple Emulsions 247

12.9.1 Droplet Size Measurements 247

12.10 Rheological Measurements 248

References 249

13 Preparation of Nanosuspensions 251

13.1 Introduction 251

13.2 Nucleation and Growth, and Control of Particle Size Distribution 252

13.3 Preparation of Nanosuspensions by Bottom–Up Processes 254

13.3.1 Solvent Antisolvent Method 255

13.3.2 Use of a Nanoemulsion 255

13.3.3 Mixing Two Microemulsions 256

13.3.4 Preparation of Polymer Nanoparticles by Miniemulsion or Minisuspension polymerisation 256

13.4 Preparation of Nanosuspensions Using the Bottom–Down Process 257

13.4.1 Wetting of the Bulk Powder 257
13.4.2 Breaking of Aggregates and Agglomerates into Individual Units 260
13.4.3 Wet Milling or Comminution 260
13.4.4 Stabilisation of the Resulting Dispersion 261
13.4.5 Prevention of Ostwald Ripening (Crystal Growth) 268

References 268

14 Formulation of Nanoemulsions 271
14.1 Introduction 271
14.2 Mechanism of Emulsification 273
14.3 Methods of Emulsification and the Role of Surfactants 275
14.4 Preparation of Nanoemulsions 276
14.4.1 High–Pressure Homogenisation 276
14.4.2 Phase Inversion Composition (PIC) Principle 277
14.4.3 Phase Inversion Temperature (PIT) Principle 277
14.4.4 Preparation of Nanoemulsions by Dilution of Microemulsions 279
14.5 Steric Stabilisation and the Role of the Adsorbed Layer Thickness 281
14.5.1 Ostwald Ripening 283
14.5.2 Practical Examples of Nanoemulsions 284
14.5.3 Nanoemulsions Based on Polymeric Surfactants 293

References 299

15 Formulation of Microemulsions 301
15.1 Introduction 301
15.2 Thermodynamic Definition of Microemulsions 302
15.3 Mixed–Film and Solubilisation Theories of Microemulsions 303
15.3.1 Mixed–Film Theories 303
15.3.2 Solubilisation Theories 305
15.4 Thermodynamic Theory of Microemulsion Formation 307
15.4.1 Reason for Combining Two Surfactants 308
15.4.2 Factors Determining W/O versus O/W Microemulsions 309
15.5 Characterisation of Microemulsions Using Scattering Techniques 311
15.5.1 Time–Average (Static) Light Scattering 311
15.5.2 Calculation of Droplet Size from Interfacial Area 313
15.5.3 Dynamic Light Scattering (Photon Correlation Spectroscopy; PCS) 314
15.6 Characterisation of Microemulsions Using Conductivity 315
15.7 NMR Measurements 316
15.8 Formulation of Microemulsions 317
15.8.1 The HLB System 318
15.8.2 Phase Inversion Temperature (PIT) Method 319
15.8.3 The Cohesive Energy Ratio (CER) Concept 320
15.8.4 Cosurfactant Partitioning 322
References 322
Further Reading 323
16 Formulation of Foams 325
16.1 Introduction 325
16.2 Foam Preparation 326
16.3 Foam Structure 327
16.4 Classification of Foam Stability 328
16.5 Drainage and Thinning of Foam Films 329
16.6 Theories of Foam Stability 330
16.6.1 Surface Viscosity and Elasticity Theory 330
16.6.2 The Gibbs Marangoni Effect Theory 330
16.6.3 Surface Forces Theory (Disjoining Pressure) 331
16.6.4 Stabilisation by Micelles (High Surfactant Concentrations > cmc) 334
16.6.5 Stabilisation by Lamellar Liquid Crystalline Phases 334
16.6.6 Stabilisation of Foam Films by Mixed Surfactants 334
16.7 Foam Inhibitors 335
16.7.1 Chemical Inhibitors That Lower Viscosity and Increase Drainage 335
16.7.2 Solubilised Chemicals Which Cause Antifoaming 335
16.7.3 Droplets and Oil Lenses Which Cause Antifoaming and Defoaming 336
16.7.4 Surface Tension Gradients (Induced by Antifoamers) 336
16.7.5 Hydrophobic Particles as Antifoamers 337
16.7.6 Mixtures of Hydrophobic Particles and Oils as Antifoamers 338
16.8 Physical Properties of Foams 338
16.8.1 Mechanical Properties 338
19.4.2.2 Scanning Electron Microscopy 409
19.4.3 Confocal Laser Scanning Microscopy 409
19.4.4 Scanning Probe Microscopy 409
19.4.5 Scanning Tunneling Microscopy 410
19.4.6 Atomic Force Microscopy 410
19.5 Scattering Techniques 411
19.5.1 Light–Scattering 411
19.5.1.1 Time–Average Light Scattering 411
19.5.2 Turbidity Measurements 412
19.5.3 Light–Diffraction Techniques 413
19.5.4 Dynamic Light Scattering (DLS): Photon Correlation Spectroscopy (PCS) 415
19.5.5 Back–Scattering Techniques 418
19.6 Measurement of Rate of Flocculation 418
19.7 Measurement of Incipient Flocculation 419
19.8 Measurement of Crystal Growth (Ostwald Ripening) 420
19.9 Bulk Properties of Suspensions: Equilibrium Sediment Volume (or Height) and Redispersion 420

References 421

20 Evaluating Formulations without Dilution: Rheological Techniques 423
20.1 Introduction 423
20.2 Steady–State Measurements 424
20.2.1 Rheological Models for Analysis of Flow Curves 424
20.2.1.1 Newtonian Systems 424
20.2.1.2 Bingham Plastic Systems 425
20.2.1.3 Pseudoplastic (Shear Thinning) System 425
20.2.1.4 Dilatant (Shear Thickening) System 425
20.2.1.5 Herschel–Bulkley General Model 426
20.2.1.6 The Casson Model 426
20.2.1.7 The Cross Equation 426
20.2.2 Time Effects during Flow: Thixotropy and Negative (or Anti–) Thixotropy 426
20.3 Constant Stress (Creep) Measurements 429
20.3.1 Analysis of Creep Curves 430
 20.3.1.1 Viscous Fluid 430
 20.3.1.2 Elastic Solid 430
 20.3.2 Viscoelastic Response 430
 20.3.2.1 Viscoelastic Liquid 430
 20.3.2.2 Viscoelastic Solid 431
 20.3.3 Creep Procedure 431

20.4 Dynamic (Oscillatory) Measurements 432
 20.4.1 Analysis of Oscillatory Response for a Viscoelastic System 433
 20.4.2 Vector Analysis of the Complex Modulus 434
 20.4.2.1 Dynamic viscosity 434
 20.4.2.2 Strain Sweep 434
 20.4.2.3 Frequency Sweep 434
 20.4.3 The Cohesive Energy Density Ec 436
 20.4.4 Application of Rheological Techniques to Assess and Predict the Physical Stability of Suspensions 436
 20.4.4.1 Rheological Techniques to Assess Sedimentation and Syneresis 436
 20.4.4.2 Role of Thickeners 437
 20.4.5 Assessment of Flocculation Using Rheological Techniques 438
 20.4.5.1 Strain Sweep Measurements 440
 20.4.5.2 Oscillatory Sweep Measurements 441

References 442
Further Reading 442

21 Assessment and Prediction of Creaming, Sedimentation, Flocculation, and Coalescence of Formulations 443

21.1 Assessment and Prediction of Creaming and Sedimentation 443
 21.1.1 Introduction 443
 21.1.2 Accelerated Tests and Their Limitations 443
 21.1.3 Application of High–Gravity (g) Forces 444
 21.1.4 Rheological Techniques for Prediction of Sedimentation or Creaming 445
 21.1.5 Separation of Formulation (Syneresis) 445
 21.1.6 Examples of Correlation of Sedimentation or Creaming with Residual (Zero Shear) Viscosity 446
 21.1.6.1 Model Suspensions of Aqueous Polystyrene Latex 446
Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit
http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

Product Name: Formulation of Disperse Systems. Science and Technology
Web Address: http://www.researchandmarkets.com/reports/2741454/
Office Code: SCDKIJJH

Product Format
Please select the product format and quantity you require:

<table>
<thead>
<tr>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard Copy (Hard Back):</td>
</tr>
</tbody>
</table>

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title: Mr ☐ Mrs ☐ Dr ☐ Miss ☐ Ms ☐ Prof ☐
First Name: ____________________________
Last Name: ____________________________
Email Address: * _______________________
Job Title: _____________________________
Organisation: _________________________
Address: ______________________________
City: _________________________________
Postal / Zip Code: _____________________
Country: ______________________________
Phone Number: _________________________
Fax Number: __________________________

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: _____________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World