Introduction to Numerical Methods for Time Dependent Differential Equations

Description:
Introduction to Numerical Methods for Time Dependent Differential Equations delves into the underlying mathematical theory needed to solve time dependent differential equations numerically. Written as a self-contained introduction, the book is divided into two parts to emphasize both ordinary differential equations (ODEs) and partial differential equations (PDEs).

Beginning with ODEs and their approximations, the authors provide a crucial presentation of fundamental notions, such as the theory of scalar equations, finite difference approximations, and the Explicit Euler method. Next, a discussion on higher order approximations, implicit methods, multistep methods, Fourier interpolation, PDEs in one space dimension as well as their related systems is provided.

Introduction to Numerical Methods for Time Dependent Differential Equations features:
- A step-by-step discussion of the procedures needed to prove the stability of difference approximations
- Multiple exercises throughout with select answers, providing readers with a practical guide to understanding the approximations of differential equations
- A simplified approach in a one space dimension
- Analytical theory for difference approximations that is particularly useful to clarify procedures

Introduction to Numerical Methods for Time Dependent Differential Equations is an excellent textbook for upper-undergraduate courses in applied mathematics, engineering, and physics as well as a useful reference for physical scientists, engineers, numerical analysts, and mathematical modelers who use numerical experiments to test designs or predict and investigate phenomena from many disciplines.

Contents:
Preface xiii
Acknowledgments xv
PART I ORDINARY DIFFERENTIAL EQUATIONS AND THEIR APPROXIMATIONS
1 First Order Scalar Equations 3
1.1 Constant coefficient linear equations 3
1.1.1 Duhamel’s principle 8
1.1.2 Principle of frozen coefficients 10
1.2 Variable coefficient linear equations 10
1.2.1 The principle of superposition 10
1.2.2 Duhamel’s principle for variable coefficients 12
1.3 Perturbations and the concept of stability 13
1.4 Nonlinear equations: the possibility of blowup 17
1.5 The principle of linearization 20
2 The Method of Euler 23
8.1 Examples of equations with simple wave solutions 95
8.1.1 The oneway wave equation 95
8.1.2 The heat equation 96
8.1.3 The wave equation 97
8.2 Discussion of well posed problems for time dependent PDE... 98
8.2.1 First order equations 98
8.2.2 Second order (in space) equations 100
8.2.3 General equation 101
8.2.4 Stability against lower order terms and systems of equations 102
9 Approximations of 1periodic Solutions of PDE 105
9.1 Approximations of space derivatives 105
9.1.1 Smoothness of the Fourier interpolant 108
9.2 Differentiation of Periodic Functions 109
9.3 The method of lines 110
9.3.1 The oneway wave equation 110
9.3.2 The heat equation 113
9.3.3 The wave equation 115
9.4 Time Discretizations and Stability Analysis 116
10 Linear InitialBoundary Value Problems 119
10.1 Well Posed InitialBoundary Value Problems 119
10.1.1 The heat equation on a strip 120
10.1.2 The oneway wave equation on a strip 122
10.1.3 The wave equation on a strip 124
10.2 The method of lines 126
10.2.1 The heat equation 126
10.2.2 Finite differences algebra 130
10.2.3 General parabolic problem 131
10.2.4 The oneway wave equation 134
10.2.5 The wave equation 135
11 Nonlinear Problems 137
11.1 Initialvalue problems for ODE 138
11.2 Existence theorems for nonlinear PDE 141

11.3 A nonlinear example: Burgers equation 145

A Auxiliary Material 149

A.1 Some useful Taylor series 149

A.2 The O notation 150

A.3 The solution expansion 150

B Solutions to Exercises 153

References 171

Index 173

Ordering:

Order Online - http://www.researchandmarkets.com/reports/2741498/

Order by Fax - using the form below

Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

Product Name: Introduction to Numerical Methods for Time Dependent Differential Equations
Web Address: http://www.researchandmarkets.com/reports/2741498/
Office Code: SCH35RUJ

Product Format
Please select the product format and quantity you require:

| Quantity | Hard Copy (Hard Back): USD 99 + USD 29 Shipping/Handling |

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title: [] Mr [] Mrs [] Dr [] Miss [] Ms [] Prof
First Name: ___________________________ Last Name: ___________________________
Email Address: * ___________________________
Job Title: ___________________________
Organisation: ___________________________
Address: ___________________________
City: ___________________________
Postal / Zip Code: ___________________________
Country: ___________________________
Phone Number: ___________________________
Fax Number: ___________________________

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:

Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:

<table>
<thead>
<tr>
<th>Account number</th>
<th>833 130 83</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sort code</td>
<td>98-53-30</td>
</tr>
<tr>
<td>Swift code</td>
<td>ULSBIE2D</td>
</tr>
<tr>
<td>IBAN number</td>
<td>IE78ULSB98533083313083</td>
</tr>
<tr>
<td>Bank Address</td>
<td>Ulster Bank, 27-35 Main Street, Blackrock, Co. Dublin, Ireland.</td>
</tr>
</tbody>
</table>

If you have a Marketing Code please enter it below:

Marketing Code: _______________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:

(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World