
Description: Building energy design is currently going through a period of major changes. One key factor of this is the adoption of net–zero energy as a long term goal for new buildings in most developed countries. To achieve this goal a lot of research is needed to accumulate knowledge and to utilize it in practical applications. In this book, accomplished international experts present advanced modeling techniques as well as in–depth case studies in order to aid designers in optimally using simulation tools for net–zero energy building design. The strategies and technologies discussed in this book are, however, also applicable for the design of energy–plus buildings. This book was facilitated by International Energy Agency's Solar Heating and Cooling (SHC) Programs and the Energy in Buildings and Communities (EBC) Programs through the joint SHC Task 40/EBC Annex 52: Towards Net Zero Energy Solar Buildings R&D collaboration.

After presenting the fundamental concepts, design strategies, and technologies required to achieve net–zero energy in buildings, the book discusses different design processes and tools to support the design of net–zero energy buildings (NZEBs). A substantial chapter reports on four diverse NZEBs that have been operating for at least two years. These case studies are extremely high quality because they all have high resolution measured data and the authors were intimately involved in all of them from conception to operating. By comparing the projections made using the respective design tools with the actual performance data, successful (and unsuccessful) design techniques and processes, design and simulation tools, and technologies are identified.

Written by both academics and practitioners (building designers) and by North Americans as well as Europeans, this book provides a very broad perspective. It includes a detailed description of design processes and a list of appropriate tools for each design phase, plus methods for parametric analysis and mathematical optimization. It is a guideline for building designers that draws from both the profound theoretical background and the vast practical experience of the authors.

Contents:

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>xiii</td>
</tr>
<tr>
<td>xv</td>
</tr>
<tr>
<td>xvii</td>
</tr>
<tr>
<td>xix</td>
</tr>
<tr>
<td>xxii</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
</tr>
<tr>
<td>1.1.1</td>
</tr>
<tr>
<td>1.1.2</td>
</tr>
<tr>
<td>1.2</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
</tbody>
</table>
2.1.2 Detailed frequency domain wall model and transfer functions 16
 2.1.2.1 Distributed parameter model for multilayered wall 16
 2.1.2.2 Admittance transfer functions for walls 17
 2.1.3 Z-Transfer function method 22
 2.1.4 Detailed zone model and building transfer functions 25
 2.1.4.1 Analysis of building transfer functions 30
 2.1.4.2 Heating/cooling load and room temperature calculation 32
 2.1.4.3 Discrete Fourier Series (DFS) method for simulation 32
 2.1.5 Building transient response analysis 33
 2.1.5.1 Nomenclature 34
 2.2 Renewable energy generation systems/technologies integrated in Net ZEBs 34
 2.2.1 Building-integrated photovoltaics as an enabling technology for Net ZEBs 35
 2.2.1.1 Technologies 36
 2.2.1.2 Modeling 39
 2.2.2 Solar thermal systems 45
 2.2.2.1 Solar thermal collectors 45
 2.2.2.2 Modeling of solar thermal collectors 49
 2.2.2.3 Thermal storage tanks 51
 2.2.2.4 Modeling of thermal storage tanks 52
 2.2.2.5 Solar combi-systems 55
 2.2.3 Active building-integrated thermal energy storage and panel/radiant heating/cooling systems 55
 2.2.3.1 Radiant heating/cooling systems integrated with thermal mass 57
 2.2.3.2 Modeling active BITES 58
 2.2.3.3 Methods used in two mainstream building simulation software 62
 2.2.3.4 Nomenclature 63
 2.2.4 Heat pump systems a promising technology for Net ZEBs 63
 2.2.4.1 Solar air-conditioning 64
 2.2.4.2 Solar assisted/source heat pump systems 64
 2.2.4.3 Ground source heat pumps 65
 2.2.5 Combined heat and power (CHP) for Net ZEBs 66
 References 67
 3 Comfort considerations in Net ZEBs: theory and design 75
4.2.4.1 Daylight 113
4.2.4.2 Solar protection 114
4.2.4.3 Building thermal inertia 115
4.2.4.4 Natural and hybrid ventilation 116
4.2.4.5 Building envelope thermal resistance 118
4.2.4.6 Solar energy technologies integration 119
4.2.5 Design development 119
4.2.5.1 Envelope and thermal inertia 120
4.2.5.2 Daylight 120
4.2.5.3 Plug loads and electric lighting 122
4.2.5.4 RET and HVAC 123
4.2.6 Technical design 124
4.2.7 Integrated design process and project delivery methods 126
4.2.8 Conclusion 133
4.3 NET ZEB design tools, model resolution, and design methods 133
4.3.1 Introduction 133
4.3.2 Model resolution 134
4.3.3 Model resolution for specific building systems and aspects 141
4.3.3.1 Geometry and thermal zoning 141
4.3.3.2 HVAC and active renewable energy systems 144
4.3.3.3 Photovoltaics and building-integrated photovoltaics 145
4.3.3.4 Lighting and daylighting 147
4.3.3.5 Airflow 149
4.3.3.6 Occupant comfort 151
4.3.3.7 Occupant behavior 153
4.3.4 Use of tools in design 157
4.3.4.1 Climate analysis 157
4.3.4.2 Solar design days 159
4.3.4.3 Parametric analysis 160
4.3.4.4 Interactions 161
4.3.4.5 Multidimensional parametric analysis 162
4.3.4.6 Visualization 162
7.2.3 Measured performance 256
7.2.4 Redesign study 259
7.2.4.1 Boundary conditions 260
7.2.4.2 Form and fabric 260
7.2.4.3 Operations 260
7.2.4.4 Renewable energy systems 261
7.2.4.5 Simulation results 261
7.2.4.6 Implementation of redesign strategies 262
7.2.5 Conclusions and lessons learned 266
7.3 Leaf house 269
7.3.1 Main features of the leaf house 269
7.3.2 Description of the design process 272
7.3.3 Purposes of the building design 272
7.3.4 Description of the thermal system plant 272
7.3.5 Monitored data 277
7.3.6 Features and limits of the employed model 278
7.3.7 Calibration of the model 280
7.3.8 Redesign 284
7.3.9 Conclusions and lessons learned 288
7.4 NREL RSF 289
7.4.1 Introduction to the RSF 290
7.4.2 Key project design features 291
7.4.2.1 Design process 291
7.4.2.2 Envelope 292
7.4.2.3 Daylighting and electric lighting 293
7.4.2.4 Space conditioning system 293
7.4.2.5 Thermal storage labyrinth 295
7.4.2.6 Transpired solar thermal collector 297
7.4.2.7 Natural ventilation 298
7.4.2.8 Building operation, typical monitored data, and thermal performance 298
7.4.2.9 Photovoltaics 301
7.4.2.10 Building simulation software support 302
7.4.2.11 Software limitations 303
7.4.2.12 Significance of the early design stage 304
7.4.3 Abstraction to archetypes 306
7.4.3.1 Model development 307
7.4.3.2 Model validation and calibration 311
7.4.3.3 Integrating design and control for daylighting and solar heat gain option with controlled shading 312
7.4.4 Alternative design and operation for consideration 319
7.4.4.1 Building–integrated PV: optimal use of building roof and façade 319
7.4.4.2 Building–integrated PV/T and transpired collector with air-source heat pump 319
7.4.4.3 Active building–integrated thermal energy storage 320
7.4.5 Conclusions. 320
7.5 ENERPOS 321
7.5.1 Natural cross-ventilation and ceiling fans 322
7.5.2 Solar shading and daylighting 323
7.5.3 Microclimate measures 323
7.5.4 Materials 324
7.5.5 Ergonomics and interior design 324
7.5.6 Energy efficiency 325
7.5.6.1 Artificial lighting 325
7.5.6.2 Ceiling fans 325
7.5.6.3 Air-conditioning system 326
7.5.6.4 Computer network and plug loads 326
7.5.6.5 Building management system and individual controls 326
7.5.7 Integration of renewable energy technology 327
7.5.8 Description of the design process 327
7.5.8.1 Design objectives and importance of the design brief 328
7.5.8.2 Design team and timeline 328
7.5.8.3 Design tools 328
7.5.8.4 Human factors consideration in the design 330
7.5.9 Monitoring system 331
7.5.10 Monitored data 331
7.5.10.1 Measured performance 331
7.5.11 Comparison of model prediction with measurements for ENERPOS 333
7.5.11.1 Energy use 333
7.5.11.2 Thermal comfort 336
7.5.12 Thermal comfort experimental study 338
7.5.12.1 Purpose and methodology 338
7.5.12.2 Main results of the surveys 339
7.5.12.3 A comparison between the experimental data and the Givoni comfort zones 339
7.5.13 Lessons learned for future design of Net ZEBs in tropical climate 341
7.5.13.1 Interior lighting 342
7.5.13.2 Elevator energy 343
7.5.13.3 Air-conditioning 343
7.5.13.4 Occupant behavior 343
7.5.13.5 Use of building thermal mass and night cooling 343
7.6 Conclusions 343
References 345
8 Conclusion, research needs, and future directions 351
8.1 Net ZEB modeling, design, and simulation 351
8.2 Future directions and research needs 352
Glossary 355
Index 361

Ordering: Order Online - http://www.researchandmarkets.com/reports/2755188/
Order by Fax - using the form below
Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Web Address:</td>
<td>http://www.researchandmarkets.com/reports/2755188/</td>
</tr>
<tr>
<td>Office Code:</td>
<td>SCDKNUUB</td>
</tr>
</tbody>
</table>

Product Format
Please select the product format and quantity you require:

<table>
<thead>
<tr>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard Copy (Hard Back):</td>
</tr>
</tbody>
</table>

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in **BLOCK CAPITALS**

<table>
<thead>
<tr>
<th>Title:</th>
<th>Mr □ Mrs □ Dr □ Miss □ Ms □ Prof □</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Name:</td>
<td>___________________________</td>
</tr>
<tr>
<td>Email Address: *</td>
<td>___________________________</td>
</tr>
<tr>
<td>Job Title:</td>
<td>___________________________</td>
</tr>
<tr>
<td>Organisation:</td>
<td>___________________________</td>
</tr>
<tr>
<td>Address:</td>
<td>___________________________</td>
</tr>
<tr>
<td>City:</td>
<td>___________________________</td>
</tr>
<tr>
<td>Postal / Zip Code:</td>
<td>___________________________</td>
</tr>
<tr>
<td>Country:</td>
<td>___________________________</td>
</tr>
<tr>
<td>Phone Number:</td>
<td>___________________________</td>
</tr>
<tr>
<td>Fax Number:</td>
<td>___________________________</td>
</tr>
</tbody>
</table>

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:

Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:

Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: ________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World