Frontiers of Surface-Enhanced Raman Scattering. Single Nanoparticles and Single Cells

Description: Surface-enhanced Raman scattering (SERS) has flourished for nearly four decades and today it is a vibrant, quintessential embodiment of nanoscience and nanotechnology with a broad range of applications.

The current level of understanding of SERS is now well advanced and as a consequence researchers are beginning to formulate strategies for exploiting SERS as a general platform for chemical and biological analysis, with unprecedented routine levels of sensitivity, specificity and reproducibility.

Written by internationally-recognised experts, this text:

- Provides comprehensive coverage of the theory, instrumentation and applications of SERS.
- Presents new research fields of this key analytical technique including:
 - single molecule detection;
 - nanoparticle analysis;
 - single cell and bacterial diagnostics;
 - the detection of biomolecules and biomolecular complexes.
- Aims to convey to the reader the enthusiasm of researchers in this field.

This text is relevant to those involved in diagnostic tools for nanomedicine and synthesis as well as materials scientists working in the area of the characterization of nanoparticles.

It is the authors hope that this book will not only be useful but enjoyable to read. Their wish is that it inspires its readers to try novel and exciting SERS research.

Contents:

List of Contributors xi

Preface xv

1. Calculation of Surface–Enhanced Raman Spectra Including Orientational and Stokes Effects Using TDDFT/Mie Theory QM/ED Method 1
 George C. Schatz and Nicholas A. Valley
 1.1 Introduction: Combined Quantum Mechanics/Electrodynamics Methods 1
 1.2 Computational Details 3
 1.3 Summary of Model Systems 4
 1.4 Azimuthal Averaging 5
 1.5 SERS of Pyridine: Models G, A, B, S, and V 6
 1.6 Orientation Effects in SERS of Phthalocyanines 11
 1.7 Two Particle QM/ED Calculations 13
 1.8 Summary 15
Acknowledgment 16

References 16

2. Non–resonant SERS Using the Hottest Hot Spots of Plasmonic Nanoaggregates 19
Katrin Kneipp and Harald Kneipp

2.1 Introduction 19

2.2 Aggregates of Silver and Gold Nanoparticles and Their Hot Spots 21

2.2.1 Evaluation of Plasmonic Nanoaggregates by Vibrational Pumping due to a Non–resonant SERS Process 21

2.2.2 Probing Plasmonic Nanoaggregates by Electron Energy Loss Spectroscopy 24

2.2.3 Probing Local Fields in Hot Spots by SERS and SEHRS 25

2.3 SERS Using Hot Silver Nanoaggregates and Non–resonant NIR Excitation 26

2.3.1 SERS Signal vs. Concentration of the Target Molecule 26

2.3.2 Spectroscopic Potential of Non–resonant SERS Using the Hottest Hot Spots 30

2.4 Summary and Conclusions 31

References 32

Lev Chuntonov and Gilad Haran

3.1 Introduction 37

3.2 Methodology 38

3.3 Plasmon Mode Structure of Nanoparticle Clusters 39

3.3.1 Dimers 39

3.3.2 Trimers 40

3.4 Effect of Plasmon Modes on SMSERS 47

3.4.1 Effect of the Spectral Lineshape 47

3.4.2 Effect of Multiple Normal Modes 49

3.5 Conclusions 54

Acknowledgment 54

References 54

4. Experimental Demonstration of Electromagnetic Mechanism of SERS and Quantitative Analysis of SERS
Fluctuation Based on the Mechanism 59
Tamitake Itoh

4.1 Experimental Demonstration of the EM Mechanism of SERS 59

4.1.1 Introduction 59

4.1.2 Observations of the EM Mechanism in SERS Spectral Variations 60
4.1.3 Observations of the EM Mechanism in the Refractive Index Dependence of SERS Spectra 62
4.1.4 Quantitative Evaluation of the EM Mechanism of SERS 64
4.1.5 Summary 72
4.2 Quantitative Analysis of SERS Fluctuation Based on the EM Mechanism 72
4.2.1 Introduction 72
4.2.2 Intensity and Spectral Fluctuation in SERS and SEF 73
4.2.3 Framework for Analysis of Fluctuation in SERS and SEF 73
4.2.4 Analysis of Intensity Fluctuation in SERS and SEF 76
4.2.5 Analysis of Spectral Fluctuation in SERS and SEF 78
4.2.6 Summary 82
4.3 Conclusion 82
Acknowledgments 83
References 83

5. Single–Molecule Surface–Enhanced Raman Scattering as a Probe for Adsorption Dynamics on Metal Surfaces 89
Mai Takase, Fumika Nagasawa, Hideki Nabika and Kei Murakoshi
5.1 Introduction 89
5.2 Simultaneous Measurements of Conductance and SERS of a Single–Molecule Junction 90
5.3 SERS Observation Using Heterometallic Nanodimers at the Single–Molecule Level 96
5.4 Conclusion 101
Acknowledgments 101
References 101

6. Analysis of Blinking SERS by a Power Law with an Exponential Function 107
Yasutaka Kitahama and Yukihiro Ozaki
6.1 Introduction 107
6.2 Materials and Methods 110
6.3 Power Law Analysis 110
6.4 Plasmon Resonance Wavelength Dependence 117
6.4.1 Power Law Exponents for the Bright and Dark Events 117
6.4.2 Truncation Time for the Dark Events 123
6.5 Energy Density Dependence 123
6.5.1 Power Law Exponents for the Bright and Dark Events 123
6.5.2 Truncation Time for the Dark Events 125
6.5.3 Comparison with Other Analysis 126
6.6 Temperature Dependence 129
6.6.1 Power Law Exponents for the Bright and Dark Events 129
6.6.2 Truncation Time for the Dark Events 129
6.6.3 Comparison with Other Analysis 130
6.7 Summary 132
Acknowledgments 132
References 133

7. Tip–Enhanced Raman Spectroscopy (TERS) for Nanoscale Imaging and Analysis 139
Taka–aki Yano and Satoshi Kawata
7.1 Crucial Difference between TERS and SERS 139
7.2 TERS–Specific Spectral Change as a Function of Tip Sample Distance 141
7.3 Mechanical Effect in TERS 143
7.4 Application to Analytical Nano–Imaging 144
7.5 Metallic Probe Tip: Design and Fabrication 149
7.6 Spatial Resolution 154
7.7 Real–Time and 3D Imaging: Perspectives 155
References 156

Jian–Feng Li and Zhong–Qun Tian
8.1 Introduction 163
8.2 Synthesis of Various Shell–Isolated Nanoparticles (SHINs) 167
8.3 Characterizations of SHINs 169
8.3.1 Correlation of the SHINERS Intensity and Shell Thickness 169
8.3.2 Characterization of the Ultra–Thin Uniform Silica Shell 171
8.3.3 Influence of the SHINs on the Surface 172
8.4 Applications of SHINERS 173
8.4.1 Single–Crystal Electrode Surface 173
8.4.2 Non–Metallic Material Surfaces 175
8.4.3 Single Particle SHINERS 178
8.5 Different Strategies of SHINERS Compared to Previous SERS Works Using Core Shell or Overlayer Structures 178
8.6 Advantages of Isolated Mode over Contact Mode 180
Diogo Volpati, Aisha Alsaleh, Carlos J. L. Constantino and Ricardo F. Aroca

11.1 Introduction 243

11.2 Surface–Enhanced Resonance Raman Scattering of Tagged Phospholipids 245

11.2.1 Experimental Details 245

11.2.2 Langmuir and LB films 246

11.2.3 Electronic Absorption 247

11.2.4 Characteristic Vibrational Modes of the Tagged Phospholipid 248

11.2.5 Single Molecule Detection 250

11.3 Shell–Isolated Nanoparticle Enhanced Fluorescence (SHINEF) 251

11.3.1 Tuning the Enhancement Factor in SHINEF 251

11.3.2 SHINEF of Fluorescein–DHPE 253

11.4 Conclusions 254

Acknowledgments 255

References 255

12. SERS Analysis of Bacteria, Human Blood, and Cancer Cells: a Metabolomic and Diagnostic Tool 257
W. Ranjith Premasiri, Paul Lemler, Ying Chen, Yoseph Gebregziabher and Lawrence D. Ziegler

12.1 Introduction 257

12.2 SERS of Bacterial Cells: Methodology and Diagnostics 258

12.3 Characteristics of SERS Spectra of Bacteria 261

12.4 PCA Barcode Analysis 263

12.5 Biological Origins of Bacterial SERS Signatures 265

12.6 SERS Bacterial Identification in Human Body Fluids: Bacteremia and UTI Diagnostics 266

12.7 Red Blood Cells and Hemoglobin: Blood Aging and Disease Detection 267

12.8 SERS of Whole Blood 269

12.9 SERS of RBCs 271

12.10 Malaria Detection 273

12.11 Cancer Cell Detection: Metabolic Profiling by SERS 273

12.12 Conclusions 276

Acknowledgment 277

References 277
13. SERS in Cells: from Concepts to Practical Applications 285
Janina Kneipp and Daniela Drescher

13.1 Introduction 285

13.2 SERS Labels and SERS Nanoprobes: Different Approaches to Obtain Different Information 286

13.2.1 Highlighting Cellular Substructures with SERS Labels 286

13.2.2 Probing Intrinsic Cellular Biochemistry with SERS Nanoprobes 288

13.3 Consequences of Endocytotic Uptake and Processing for Intrinsic SERS Probing in Cells 289

13.4 Quantification of Metal Nanoparticles in Cells 292

13.5 Toxicity Considerations 295

13.6 Applications 298

13.6.1 pH Nanosensors for Studies in Live Cells 298

13.6.2 Following Cell Division with SERS 299

Acknowledgment 301

References 301

Index 309

Ordering:
Order Online - http://www.researchandmarkets.com/reports/2766316/

Order by Fax - using the form below

Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

Product Name: Frontiers of Surface-Enhanced Raman Scattering. Single Nanoparticles and Single Cells
Web Address: http://www.researchandmarkets.com/reports/2766316/
Office Code: SCDKFWEO

Product Format
Please select the product format and quantity you require:

<table>
<thead>
<tr>
<th>Quantity</th>
<th>USD 162 + USD 29 Shipping/Handling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard Copy (Hard Back):</td>
<td></td>
</tr>
</tbody>
</table>

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in BLOCK CAPITALS

<table>
<thead>
<tr>
<th>Title:</th>
<th>Mr □</th>
<th>Mrs □</th>
<th>Dr □</th>
<th>Miss □</th>
<th>Ms □</th>
<th>Prof □</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Name:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Last Name:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Email Address: *</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Job Title:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organisation:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Address:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>City:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Postal / Zip Code:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phone Number:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fax Number:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:

Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:

Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: _______________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World