Biomaterials for Cancer Therapeutics. Woodhead Publishing Series in Biomaterials

Description: Cancer can affect people of all ages, and approximately one in three people are estimated to be diagnosed with cancer during their lifetime. Extensive research is being undertaken by many different institutions to explore potential new therapeutics, and biomaterials technology is now being developed to target, treat and prevent cancer. This unique book discusses the role and potential of biomaterials in treating this prevalent disease.

The first part of the book discusses the fundamentals of biomaterials for cancer therapeutics. Chapters in part two discuss synthetic vaccines, proteins and polymers for cancer therapeutics. Part three focusses on theranosis and drug delivery systems, whilst the final set of chapters look at biomaterial therapies and cancer cell interaction.

This extensive book provides a complete overview of the latest research into the potential of biomaterials for the diagnosis, therapy and prevention of cancer. Biomaterials for cancer therapeutics is an essential text for academics, scientists and researchers within the biomedical industry, and will also be of interest to clinicians with a research interest in cancer therapies and biomaterials.

- A complete overview of the latest research into the potential of biomaterials for the diagnosis, therapy and prevention of cancer
- Discusses the fundamentals of biomaterials for cancer therapeutics
- Discusses synthetic vaccines, proteins and polymers for cancer therapeutics

Contents: Contributor contact details

Woodhead Publishing Series in Biomaterials

Preface

Chapter 1: Introduction to biomaterials for cancer therapeutics

Abstract:

1.1 Introduction

1.2 Biomaterials used in cancer therapeutics

1.3 Materials used in anticancer formulations

1.4 Conclusion and future trends

Chapter 2: Cancer cell biology

Abstract:

2.1 Introduction

2.2 Public perception and misunderstanding of cancer cell activity

2.3 The ‘War on Cancer’

2.4 The genetic basis of cancer

2.5 Cancer interface with the environment
2.6 Cancer cells as moving targets
2.7 Conclusion and future trends

Chapter 3: Targeted drug delivery for cancer therapy
Abstract:
3.1 Introduction
3.2 Current paradigm
3.3 Challenges to current paradigm
3.4 Conclusion and future trends

Chapter 4: Chemical synthesis of carbohydrate-based vaccines against cancers
Abstract:
4.1 Introduction
4.2 Semi-synthetic vaccines
4.3 Fully synthetic vaccines
4.4 Conclusion and future trends

Chapter 5: Generating functional mutant proteins to create highly bioactive anticancer biopharmaceuticals
Abstract:
5.1 Introduction
5.2 Artificial proteins for cancer therapy
5.3 How to create functional mutant proteins as beneficial therapeutics
5.4 Mutant TNF for cancer therapy
5.5 Conclusion and future trends
5.6 Sources of further information and advice

Chapter 6: Polymer therapeutics for treating cancer
Abstract:
6.1 Introduction
6.2 Polyamines and polyamine analogs
6.3 Polymeric P-glycoprotein (Pgp) inhibitors
6.4 Conclusion and future trends
6.5 Acknowledgment

Chapter 7: Nanotechnology for cancer screening and diagnosis
Abstract:
7.1 Introduction
7.2 Nanotechnology for cancer diagnosis
7.3 Nanotechnology-based biosensing platforms
7.4 Nanotechnology for biosensing early detection of cancer
7.5 Nanotechnology for cancer imaging
7.6 Concerns with using nanomaterials
7.7 Conclusion and future trends

Chapter 8: Synergistically integrated nanomaterials for multimodal cancer cell imaging

Abstract:

8.1 Introduction
8.2 Nanomaterial-based multifunctional imaging probes
8.3 Nanoparticles with exogenous imaging ligands
8.4 Nanoparticles with endogenous contrast
8.5 Cocktail injection
8.6 Conclusion

Chapter 9: Hybrid nanocrystal as a versatile platform for cancer theranostics

Abstract:

9.1 Introduction
9.2 Imaging modality
9.3 Developing theranostic systems
9.4 Hybrid nanocrystal as theranostic platform
9.5 Conclusion
9.6 Acknowledgment

Chapter 10: Embolisation devices from biomedical polymers for intra-arterial occlusion drug delivery in the treatment of cancer

Abstract:

10.1 Introduction
10.2 Biomedical polymers and embolisation agents
10.3 Particulate embolisation agents
10.4 Drug-eluting embolisation beads
10.5 Polymer structure, form and property relationships
10.6 Experience with drug-eluting embolisation beads
Chapter 11: Small interfering RNAs (siRNAs) as cancer therapeutics
Abstract:

11.1 Introduction
11.2 Prerequisites for siRNAs cancer therapeutics
11.3 Delivery systems for anticancer siRNAs
11.4 Current challenges for clinical trials
11.5 Conclusion
11.6 Acknowledgement

Chapter 12: Reverse engineering of the low temperature-sensitive liposome (LTSL) for treating cancer
Abstract:

12.1 Introduction
12.2 What is reverse engineering?
12.3 Investigating the thermal-sensitive liposome's performance-in-service
12.4 Defining the function of the liposome
12.5 Component design: mechanism of action
12.6 Selecting the most appropriate material when designing the Dox-LTSL
12.7 Analysis of materials performance in the design
12.8 Specification sheet
12.9 Production
12.10 Prototypes
12.11 Further development
12.12 Conclusion and future trends
12.13 Acknowledgements

Chapter 13: Gold nanoparticles (GNPs) as multifunctional materials for cancer treatment
Abstract:

13.1 Introduction
13.2 Physical properties of gold nanoparticles
13.3 Surface chemistry of GNPs
13.4 GNPs as vehicles for drug delivery
13.5 GNPs in biomedical imaging and theranostics
13.6 GNPs as radiosensitizing agents
13.7 Challenges in the development of GNPs as therapeutic agents
13.8 Conclusion and future trends
13.9 Acknowledgments

Chapter 14: Multifunctional nanosystems for cancer therapy

Abstract

14.1 Introduction
14.2 Design of multifunctional nanosystems
14.3 Illustrative examples of multifunctional nanosystems for tumor-targeted therapies
14.4 Polymeric nanosystems
14.5 Lipid nanosystems
14.6 Hybrid nanosystems
14.7 Regulatory and clinical perspectives
14.8 Conclusions

Chapter 15: Biomaterial strategies to modulate cancer

Abstract:

15.1 Introduction
15.2 Understanding cancer with biomaterials
15.3 Molecular markers for cancer
15.4 Biomaterials for cancer therapy
15.5 Conclusion

Chapter 16: 3D cancer tumor models for evaluating chemotherapeutic efficacy

Abstract:

16.1 Introduction
16.2 Efforts to fight cancer
16.3 Preclinical drug evaluation in cellular and animal models
16.4 In vivo environment
16.5 2D vs 3D culture systems
16.6 3D tumor models
16.7 Methods to culture multicellular tumor spheroids
16.8 Conclusion
Chapter 17: Nanotopography of biomaterials for controlling cancer cell function

Abstract:

17.1 Introduction

17.2 The influence of surface topography and roughness of PLGA on cancer cells: creation of nanoscale PLGA surfaces

17.3 The influence of nanoscale PLGA topographies on surface wettability and surface free energy

17.4 The influence of PLGA nanotopographies on protein adsorption

17.5 The impact of PLGA surface nanopatterns on cancer cell functions

17.6 The impact of nanopatterns and LBL monolayers on cell functions

17.7 Conclusions

Index

Ordering: Order Online - http://www.researchandmarkets.com/reports/2784233/

Order by Fax - using the form below

Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

Product Name: Biomaterials for Cancer Therapeutics. Woodhead Publishing Series in Biomaterials
Web Address: http://www.researchandmarkets.com/reports/2784233/
Office Code: SCD2STPK

Product Format
Please select the product format and quantity you require:

Quantity
Hard Copy (Hard Back): [] USD 234 + USD 29 Shipping/Handling

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title: [] Mr [] Mrs [] Dr [] Miss [] Ms [] Prof
First Name: ___________________________ Last Name: ___________________________
Email Address: * ___________________________
Job Title: ___________________________
Organisation: ___________________________
Address: ___________________________
City: ___________________________
Postal / Zip Code: ___________________________
Country: ___________________________
Phone Number: ___________________________
Fax Number: ___________________________

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:

<table>
<thead>
<tr>
<th>Account number</th>
<th>833 130 83</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sort code</td>
<td>98-53-30</td>
</tr>
<tr>
<td>Swift code</td>
<td>ULSBIE2D</td>
</tr>
<tr>
<td>IBAN number</td>
<td>IE78ULSB98533083313083</td>
</tr>
<tr>
<td>Bank Address</td>
<td>Ulster Bank, 27-35 Main Street, Blackrock, Co. Dublin, Ireland.</td>
</tr>
</tbody>
</table>

If you have a Marketing Code please enter it below:

Marketing Code: _______________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:

(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World