
Description: A one-stop guide for the theories, applications, and statistical methodologies essential to operational risk

Providing a complete overview of operational risk modeling and relevant insurance analytics, Fundamental Aspects of Operational Risk and Insurance Analytics: A Handbook of Operational Risk offers a systematic approach that covers the wide range of topics in this area. Written by a team of leading experts in the field, the handbook presents detailed coverage of the theories, applications, and models inherent in any discussion of the fundamentals of operational risk, with a primary focus on Basel II/III regulation, modeling dependence, estimation of risk models, and modeling the data elements.

Fundamental Aspects of Operational Risk and Insurance Analytics: A Handbook of Operational Risk begins with coverage on the four data elements used in operational risk framework as well as processing risk taxonomy. The book then goes further in-depth into the key topics in operational risk measurement and insurance, for example diverse methods to estimate frequency and severity models. Finally, the book ends with sections on specific topics, such as scenario analysis; multifactor modeling; and dependence modeling. A unique companion with Advances in Heavy Tailed Risk Modeling: A Handbook of Operational Risk, the handbook also features:

- Discussions on internal loss data and key risk indicators, which are both fundamental for developing a risk-sensitive framework
- Guidelines for how operational risk can be inserted into a firm’s strategic decisions
- A model for stress tests of operational risk under the United States Comprehensive Capital Analysis and Review (CCAR) program

A valuable reference for financial engineers, quantitative analysts, risk managers, and large-scale consultancy groups advising banks on their internal systems, the handbook is also useful for academics teaching postgraduate courses on the methodology of operational risk.

Marcelo G. Cruz, PhD, is Adjunct Professor at New York University and a world-renowned consultant on operational risk modeling and measurement. He has written and edited several books in operational risk, and is Founder and Editor-in-Chief of The Journal of Operational Risk.

Gareth W. Peters, PhD, is Assistant Professor in the Department of Statistical Science, Principle Investigator in Computational Statistics and Machine Learning, and Academic Member of the UK PhD Centre of Financial Computing at University College London. He is also Adjunct Scientist in the Commonwealth Scientific and Industrial Research Organisation, Australia; Associate Member Oxford-Man Institute at the Oxford University; and Associate Member in the Systemic Risk Centre at the London School of Economics.

Pavel V. Shevchenko, PhD, is Senior Principal Research Scientist in the Commonwealth Scientific and Industrial Research Organisation, Australia, as well as Adjunct Professor at the University of New South Wales and the University of Technology, Sydney. He is also Associate Editor of The Journal of Operational Risk. He works on research and consulting projects in the area of financial risk and the development of relevant numerical methods and software, has published extensively in academic journals, consults for major financial institutions, and frequently presents at industry and academic conferences.

Contents: Preface xvii
Acronyms xix
5.4.1 Simple Parametric Distributions 90
5.4.2 Truncated Distributions 92
5.4.3 Mixture and Spliced Distributions 93
5.5 Convolutions and Characteristic Functions 94
5.6 Extreme Value Theory 97
5.6.1 EVT Block Maxima 98
5.6.2 EVT Random Number of Losses 99
5.6.3 EVT Threshold Exceedances 100
6 Risk Measures and Capital Allocation 102
6.1 Development of Capital Accords Base I, II and III 103
6.2 Measures of Risk 106
6.2.1 Coherent and Convex Risk Measures 107
6.2.2 Comonotonic Additive Risk Measures 109
6.2.3 Value-at-Risk 109
6.2.4 Expected Shortfall 114
6.2.5 Spectral Risk Measure 120
6.2.6 Higher-Order Risk Measures 122
6.2.7 Distortion Risk Measures 125
6.2.8 Elicitable Risk Measures 126
6.2.9 Risk Measure Accounting for Parameter Uncertainty 130
6.3 Capital Allocation 133
6.3.1 Coherent Capital Allocation 134
6.3.2 Euler Allocation 136
6.3.3 Standard Deviation 138
6.3.4 Expected Shortfall 139
6.3.5 Value-at-Risk 140
6.3.6 Allocation by Marginal Contributions 142
6.3.7 Numerical Example 143
7 Estimation of Frequency and Severity Models 146
7.1 Frequentist Estimation 146
7.1.1 Parameteric Maximum Likelihood Method 149
7.9.1 Constant Threshold – Poisson Process 224
7.9.2 Negative Binomial and Binomial Frequencies 227
7.9.3 Ignoring Data Truncation 228
7.9.4 Threshold Varying in Time 232
7.9.5 Unknown and Stochastic Truncation Level 236
8 Model Selection and Goodness–of–Fit Testing for Frequency and Severity Models 238
8.1 Qualitative Model Diagnostic Tools 238
8.2 Tail Diagnostics 240
8.3 Information Criterion for Model Selection 242
8.3.1 Akaike Information Criterion for LDA Model Selection 242
8.3.2 Deviance Information Criterion 245
8.4 Goodness–of–Fit Testing for Model Choice (How to Account for Heavy Tails!) 246
8.4.1 Convergence Results of the Empirical Process for GOF Testing 247
8.4.2 Overview of Generic GOF Tests Omnibus Distributional Tests 256
8.4.3 Kolmogorov Smirnov Goodness–of–Fit Test and Weighted Variants: Testing in the Presence of Heavy Tails 260
8.5 Bayesian Model Selection 283
8.5.1 Reciprocal Importance Sampling Estimator 284
8.5.2 Chib Estimator for Model Evidence 285
8.6 SMC Sampler Estimators of Model Evidence 286
8.7 Multiple Risk Dependence Structure Model Selection: Copula Choice 287
8.7.1 Approaches to Goodness–of–Fit Testing for Dependence Structures 293
8.7.2 Double Parameteric Bootstrap for Copula GOF 297
9 Flexible Parametric Severity Models: Basics 300
9.1 Motivation for Flexible Parametric Severity Loss Models 300
9.2 Context of Flexible Heavy–Tailed Loss Models in OpRisk and Insurance LDA Models 301
9.3 Empirical Analysis Justifying Heavy–Tailed Loss Models in OpRisk 303
9.4 Quantile Function Heavy–Tailed Severity Models 305
9.4.1 g–and–h Severity Model Family in OpRisk 311
9.4.2 Tail Properties of the g–and–h, g, h, and h Severity in OpRisk 321
9.4.3 Parameter Estimation for the g-and-h Severity in OpRisk 324
9.4.4 Bayesian Models for the g-and-h Severity in OpRisk 328
9.5 Generalized Beta Family of Heavy-Tailed Severity Models 333
9.5.1 Generalized Beta Family Type II Severity Models in OpRisk 333
9.5.2 Sub families of the Generalized Beta Family Type II Severity Models 336
9.5.3 Mixture Representations of the Generalized Beta Family Type II Severity Models 337
9.5.4 Estimation in the Generalized Beta Family Type II Severity Models 339
9.6 Generalized Hyperbolic Families of Heavy-Tailed Severity Models 340
9.6.1 Tail Properties and Infinite Divisibility of the Generalized Hyperbolic Severity Models 342
9.6.2 Subfamilies of the Generalized Hyperbolic Severity Models 344
9.6.3 Normal Inverse Gaussian Family of Heavy-Tailed Severity Models 346
9.7 Halphen Family of Flexible Severity Models: GIG and Hyperbolic 350
9.7.1 Halphen Type A: Generalized Inverse Gaussian Family of Flexible Severity Models 355
9.7.2 Halphen Type B and IB Families of Flexible Severity Models 361
10 Dependence Concepts 365
10.1 Introduction to Concepts in Dependence for OpRisk and Insurance 365
10.2 Dependence Modeling Within and Between LDA Model Structures 366
10.2.1 Where Can One Introduce Dependence Between LDA Model Structures? 368
10.2.2 Understanding Basic Impacts of Dependence Modeling Between LDA Components in Multiple Risks 369
10.3 General Notions of Dependence 372
10.4 Dependence Measures 387
10.4.1 Linear Correlation 390
10.4.2 Rank Correlation Measures 393
10.5 Tail Dependence Parameters, Functions, and Tail Order Functions 398
10.5.1 Tail Dependence Coefficients 398
10.5.2 Tail Dependence Functions and Orders 407
10.5.3 A Link Between Orthant Extreme Dependence and Spectral Measures: Tail Dependence 410
11 Dependence Models 414
11.1 Introduction to Parametric Dependence Modeling Through a Copula 414
11.2 Copula Model Families for OpRisk 422
11.2.1 Gaussian Copula 428
14.10 Discussion 584
15 Combining Different Data Sources 585
15.1 Minimum Variance Principle 586
15.2 Bayesian Method to Combine Two Data Sources 588
15.2.1 Estimating Prior: Pure Bayesian Approach 590
15.2.2 Estimating Prior: Empirical Bayesian Approach 592
15.2.3 Poisson Frequency 593
15.2.4 The LogNormal Severity 597
15.2.5 Pareto Severity 601
15.3 Estimation of the Prior Using Data 606
15.3.1 The Maximum Likelihood Estimator 606
15.3.2 Poisson Frequencies 607
15.4 Combining Expert Opinions with External and Internal Data 609
15.4.1 Conjugate Prior Extension 610
15.4.2 Modeling Frequency: Poisson Model 611
15.4.3 LogNormal Model for Severities 618
15.4.4 Pareto Model 620
15.5 Combining Data Sources Using Credibility Theory 625
15.5.1 Bühlmann Straub Model 626
15.5.2 Modeling Frequency 628
15.5.3 Modeling Severity 631
15.5.4 Numerical Example 633
15.5.5 Remarks and Interpretation 634
15.6 Nonparametric Bayesian Approach via Dirichlet Process 635
15.7 Combining Using Dempster Shafer Structures and p-Boxes 638
15.7.1 Dempster Shafer Structures and p-Boxes 639
15.7.2 Dempster’s Rule 641
15.7.3 Intersection Method 643
15.7.4 Envelope Method 644
15.7.5 Bounds for the Empirical Data Distribution 645
15.8 General Remarks 647
16 Multifactor Modeling and Regression for Loss Processes 649
16.1 Generalized Linear Model Regressions and the Exponential Family 649
16.1.1 Basic Components of a Generalized Linear Model Regression in the Exponential Family 650
16.1.2 Basis Function Regression 654
16.2 Maximum Likelihood Estimation for Generalized Linear Models 655
16.2.1 Iterated Weighted Least Squares Maximum Likelihood for Generalised Linear Models 655
16.2.2 Model Selection via the Deviance in a GLM Regression 657
16.3 Bayesian Generalized Linear Model Regressions and Regularization Priors 659
16.3.1 Bayesian Model Selection for Regularized GLM Regression 665
16.4 Bayesian Estimation and Model Selection via SMC Samplers 666
16.4.1 Proposed SMC Sampler Solution 667
16.5 Illustrations of SMC Samplers Model Estimation and Selection for Bayesian GLM Regressions 668
16.5.1 Normal Regression Model 668
16.5.2 Poisson Regression Model 669
16.6 Introduction to Quantile Regression Methods for OpRisk 672
16.6.1 Nonparametric Quantile Regression Models 674
16.6.2 Parametric Quantile Regression Models 675
16.7 Factor Modeling for Industry Data 681
16.8 Multifactor Modeling under EVT Approach 683
17 Insurance and Risk Transfer: Products and Modeling 685
17.1 Motivation for Insurance and Risk Transfer in OpRisk 685
17.2 Fundamentals of Insurance Product Structures for OpRisk 688
17.3 Single Peril Policy Products for OpRisk 692
17.4 Generic Insurance Product Structures for OpRisk 694
17.4.1 Generic Deterministic Policy Structures 694
17.4.2 Generic Stochastic Policy Structures: Accounting for Coverage Uncertainty 700
17.5 Closed–Form LDA Models with Insurance Mitigations 705
17.5.1 Insurance Mitigation Under the Poisson–Inverse–Gaussian Closed–Form LDA Models 705
17.5.2 Insurance Mitigation and Poisson–Stable Closed–Form LDA Models 712
17.5.3 Large Claim Number Loss Processes: Generic Closed–Form LDA Models with Insurance Mitigation 719
17.5.4 Generic Closed–Form Approximations for Insured LDA Models 734
18 Insurance and Risk Transfer: Pricing Insurance–Linked Derivatives, Reinsurance, and CAT Bonds for OpRisk 750
18.1 Insurance–Linked Securities and CAT Bonds for OpRisk 751
18.1.1 Background on Insurance–Linked Derivatives and CAT Bonds for Extreme Risk Transfer 755
18.1.2 Triggers for CAT Bonds and Their Impact on Risk Transfer 760
18.1.3 Recent Trends in CAT Bonds 763
18.1.4 Management Strategies for Utilization of Insurance–Linked Derivatives and CAT Bonds in OpRisk 763
18.2 Basics of Valuation of ILS and CAT Bonds for OpRisk 765
18.2.1 Probabilistic Pricing Frameworks: Complete and Incomplete Markets, Real–World Pricing, Benchmark Approach, and Actuarial Valuation 771
18.2.2 Risk Assessment for Reinsurance: ILS and CAT Bonds 794
18.3 Applications of Pricing ILS and CAT Bonds 796
18.3.1 Probabilistic Framework for CAT Bond Market 796
18.3.2 Framework 1: Assuming Complete Market and Arbitrage–Free Pricing 798
18.3.3 Framework 2: Assuming Incomplete Arbitrage–Free Pricing 809
18.4 Sidecars, Multiple Peril Baskets, and Umbrellas for OpRisk 815
18.4.1 Umbrella Insurance 816
18.4.2 OpRisk Loss Processes Comprised of Multiple Perils 817
18.5 Optimal Insurance Purchase Strategies for OpRisk Insurance via Multiple Optimal Stopping Times 823
18.5.1 Examples of Basic Insurance Policies 826
18.5.2 Objective Functions for Rational and Boundedly Rational Insurees 828
18.5.3 Closed–Form Multiple Optimal Stopping Rules for Multiple Insurance Purchase Decisions 830
18.5.4 Aski–Polynomial Orthogonal Series Approximations 835
A Miscellaneous Definitions and List of Distributions 842
A.1 Indicator Function 842
A.2 Gamma Function 842
A.3 Discrete Distributions 842
A.3.1 Poisson Distribution 842
A.3.2 Binomial Distribution 843
A.3.3 Negative Binomial Distribution 843
A.3.4 Doubly Stochastic Poisson Process (Cox Process) 844
A.4 Continuous Distributions 844
A.4.1 Uniform Distribution 844
A.4.2 Normal (Gaussian) Distribution 844
A.4.3 Inverse Gaussian Distribution 845
A.4.4 LogNormal Distribution 845
A.4.5 Student's t Distribution 846
A.4.6 Gamma Distribution 846
A.4.7 Weibull Distribution 846
A.4.8 Inverse Chi-Squared Distribution 847
A.4.9 Pareto Distribution (One-Parameter) 847
A.4.10 Pareto Distribution (Two-Parameter) 847
A.4.11 Generalized Pareto Distribution 848
A.4.12 Beta Distribution 848
A.4.13 Generalized Inverse Gaussian Distribution 849
A.4.14 d-variate Normal Distribution 849
A.4.15 d-variate t-Distribution 850

Bibliography 851

Index 892

Ordering:

Order Online - http://www.researchandmarkets.com/reports/2785773/

Order by Fax - using the form below

Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

Web Address: http://www.researchandmarkets.com/reports/2785773/
Office Code: SCPLYNAI

Product Format
Please select the product format and quantity you require:

<table>
<thead>
<tr>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard Copy (Hard Back):</td>
</tr>
</tbody>
</table>

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title: [Mr, Mrs, Dr, Miss, Ms, Prof]
First Name: ___________________________ Last Name: ___________________________
Email Address: * ___________________________
Job Title: ___________________________
Organisation: ___________________________
Address: ___________________________
City: ___________________________
Postal / Zip Code: ___________________________
Country: ___________________________
Phone Number: ___________________________
Fax Number: ___________________________

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:

<table>
<thead>
<tr>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Account number</td>
<td>833 130 83</td>
</tr>
<tr>
<td>Sort code</td>
<td>98-53-30</td>
</tr>
<tr>
<td>Swift code</td>
<td>ULSBIE2D</td>
</tr>
<tr>
<td>IBAN number</td>
<td>IE78ULSB98533083313083</td>
</tr>
<tr>
<td>Bank Address</td>
<td>Ulster Bank, 27-35 Main Street, Blackrock, Co. Dublin, Ireland.</td>
</tr>
</tbody>
</table>

If you have a Marketing Code please enter it below:

Marketing Code: _______________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World