Multicatalyst System in Asymmetric Catalysis

Description:
Methods and applications of multicatalyst systems in asymmetric catalysis

Asymmetric catalysis plays an important role in the synthesis of chiral compounds, due to their high efficiency and selectivity that traditional methods cannot reach. This book provides details about the mechanism and advantages of multicatalysis systems in asymmetric catalysis. Examples in this book introduce the difference between multifunctional catalysis and multiple catalyst systems and cover the important and exciting results of multiple catalyst promoted asymmetric reactions and novel tandem reactions. Using examples and step-by-step methods, the chapters cover a variety of pertinent topics including:

- Additive-enabled asymmetric metric catalysis
- Asymmetric multifunctional catalysis
- Asymmetric cooperative catalysis
- Asymmetric double activation catalysis, assisted catalysis, photochemical and electrochemical methods
- Multicatalyst system realized asymmetric tandem reaction
- Waste-mediated Reactions
- Multicatalyst system mediated asymmetric reactions in total synthesis

In addition, this book focuses on applications and greener ways to make useful substances for pharmaceuticals, agrochemicals, materials, and flavour and fragrance industries.

Contents:
Preface xi
Contributors xiv
1 Toward Ideal Asymmetric Catalysis 1
 Jian Zhou and Jin-Sheng Yu
 1.1 Introduction 1
 1.2 Challenges to Realize Ideal Asymmetric Catalysis 7
 1.3 Solutions 13
 1.4 Borrow Ideas from Nature 22
 1.5 Conclusion 32
References 32
2 Multicatalyst System 37
 Zhong-Yan Cao Feng Zhu and Jian Zhou
 2.1 Introduction 37
 2.2 Models of Substrate Activation 42
 2.2.1 The Activation of Electrophiles 43
3.3 Asymmetric Hybrid Organo/Metal Catalysis 227
3.3.1 Brønsted Base/Lewis Acid Bifunctional Catalysis 228
3.3.2 Lewis Base/Lewis Acid Bifunctional Catalysis 233
3.3.3 Brønsted Acid/Lewis Acid Bifunctional Catalysis 236
3.3.4 Enamine/Lewis Acid Bifunctional Catalysis 238
3.3.5 Hemilable Trisoxazolines 240
3.4 Asymmetric Multifunctional Multimetallic Catalysis 242
3.4.1 Asymmetric Multifunctional Heteromultimetallic Catalysis 243
3.4.2 Asymmetric Multifunctional Homomultimetallic Catalysis 251
3.5 Anion–Enabled Bifunctional Asymmetric Catalysis 259
3.5.1 Ammonium Fluorides or Metal Fluorides 262
3.5.2 Metal Phosphates 265
3.5.3 Metal Carboxylates 265
3.5.4 Ammonium or Metal Aryloxides 269
3.5.5 Hydroxides and Alkoxides 271
3.5.6 Metal Amides 276
3.6 Conclusion 277

References 277

4 Asymmetric Cooperative Catalysis 291
Long Chen Yun–Lin Liu and Jian Zhou

4.1 Introduction 291
4.2 Catalytic Asymmetric Michael Addition Reaction 292
4.2.1 Combining Multiple Metal Catalysts 292
4.2.2 Combining Two Distinct Organocatalysts 293
4.2.3 Combining Metal Catalyst with Organocatalyst 297
4.3 Catalytic Asymmetric Mannich Reaction 299
4.3.1 Combining Lewis Acid Catalyst and Brønsted Base Catalyst 300
4.3.2 Combining Brønsted Acid Catalyst and Lewis Acid Catalyst 301
4.3.3 Combining Brønsted Acid Catalyst and Secondary Amine Catalyst 303
4.4 Catalytic Asymmetric Conia–Ene Reaction 304
4.4.1 Combining Chiral Lewis Acid and Achiral Lewis Acid 304
4.4.2 Combining Chiral Brønsted Base and Achiral Lewis Acid 306
4.5 Catalytic Asymmetric Umpolung Reaction 307
4.5.1 Combining NHC Catalyst and Lewis Acid Catalyst 307
4.5.2 Combining NHC Catalyst and Brønsted Acid Catalyst 313
4.6 Catalytic Asymmetric Cyanosilylation Reaction 315
4.7 Alkylation Reaction of Carbonyl Compounds 317
4.7.1 Alkylation of Carbonyl Compounds using Alcohols as Alkylation Reagents 317
4.7.2 Alkylation of Carbonyl Compounds through Benzylic C H Bond Oxidation 325
4.8 Catalytic Asymmetric Allylic Alkylation Reaction 326
4.8.1 Combining Achiral Transition Metal with Chiral LUMO–Lowering Catalysis 327
4.8.2 Combining Chiral Transition Metal Catalysis with Achiral Organocatalyst 331
4.9 Catalytic Asymmetric Aldol–Type Reaction 335
4.10 Catalytic Asymmetric (Aza)–Morita Baylis Hillman Reaction 338
4.10.1 Chiral Lewis Base/Achiral Acid Cocatalyzed (aza)–MBH Reaction 341
4.10.2 Achiral Lewis Base/Chiral Acid Cocatalyzed (aza)–MBH Reaction 342
4.11 Catalytic Asymmetric Hydrogenation Reaction 346
4.12 Catalytic Asymmetric Cycloaddition Reaction 350
4.12.1 [2 + 2] Reaction 351
4.12.2 [4 + 2] Reaction 352
4.13 Catalytic Asymmetric N H Insertion Reaction 356
4.14 Catalytic Asymmetric –Functionalization of Aldehydes 358
4.15 Miscellaneous Reaction 360
4.16 Conclusion 364

References 365

5 Asymmetric Double Activation Catalysis by Multicatalyst System 373
Long Chen Zhong–Yan Cao and Jian Zhou

5.1 Introduction 373

5.2 Double Activation by Aminocatalysis and Lewis Base Catalysis 374

5.3 Asymmetric Double Primary Amine and Brønsted Acid Catalysis 378
5.3.1 Diels Alder (DA)Reaction 379
5.3.2 Michael Addition 379
5.3.3 Epoxidation 386
5.3.4 Miscellaneous Reaction 390
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

Product Name: Multicatalyst System in Asymmetric Catalysis
Web Address: http://www.researchandmarkets.com/reports/2866008/
Office Code: SCH3S96C

Product Format
Please select the product format and quantity you require:

<table>
<thead>
<tr>
<th>Quantity</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard Copy (Hard Back):</td>
<td>USD 160 + USD 29 Shipping/Handling</td>
</tr>
</tbody>
</table>

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title: Mr ☐ Mrs ☐ Dr ☐ Miss ☐ Ms ☐ Prof ☐

First Name: ____________________________ Last Name: ____________________________

Email Address: * ____________________________

Job Title: ____________________________

Organisation: ____________________________

Address: ____________________________

City: ____________________________

Postal / Zip Code: ____________________________

Country: ____________________________

Phone Number: ____________________________

Fax Number: ____________________________

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: __________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World