Lead Generation. Methods and Strategies, Volume 67. Methods and Principles in Medicinal Chemistry

Description: In this comprehensive two-volume resource on the topic senior lead generation medicinal chemists present a coherent view of the current methods and strategies in industrial and academic lead generation. This is the first book to combine both standard and innovative approaches in comparable breadth and depth, including several recent successful lead generation case studies published here for the first time.

Beginning with a general discussion of the underlying principles and strategies, individual lead generation approaches are described in detail, highlighting their strengths and weaknesses, along with all relevant bordering disciplines like e.g. target identification and validation, predictive methods, molecular recognition or lead quality matrices. Novel lead generation approaches for challenging targets like DNA-encoded library screening or chemical biology approaches are treated here side by side with established methods as high throughput and affinity screening, knowledge- or fragment-based lead generation, and collaborative approaches. Within the entire book, a very strong focus is given to highlight the application of the presented methods, so that the reader will be able to learn from `real life` examples. The final part of the book presents several lead generation case studies taken from different therapeutic fields, including diabetes, cardiovascular and respiratory diseases, neuroscience, infection and tropical diseases.

The result is a prime knowledge resource for medicinal chemists and for every scientist involved in lead generation.

Contents:

Dedication V
List of Contributors XXI
Preface XXVII
A Personal Foreword XXXI
Volume 68a
Part I Introduction to Lead Generation 1

1 Introduction: Learnings from the Past Characteristics of Successful Leads 3
Mike Hann

Acknowledgments 10
References 10

2 Modern Lead Generation Strategies 13
Jörg Holenz and Dean G. Brown

2.1 Lead Generation Greatly Influences Clinical Candidate Quality 14

2.2 Screening of Compound Libraries has Undergone a Major Paradigm Change 15

2.3 New Chemical Modalities are Available to Tackle Difficult Targets 15

2.4 As Demands have Increased, New Lead Generation Methods Emerged 16

2.5 How do Lead Generation Chemists Meet These Challenges and Subsequently Provide Their Lead Optimization Colleagues with High-Quality Lead Series? 17

2.5.1 Learnings can be Drawn from LG Project Failures 17
2.5.2 How Many Compounds to Screen to Generate High-Quality Leads? 18
2.5.3 Which Compounds to Screen to Generate High-Quality Leads? 19
2.5.4 Developing Project-Customized, Concerted, and Comprehensive Lead Generation Strategies will Increase LG Success Rates: the CREATION of Leads 20
2.5.5 Selecting the Target Defines LG Success Rates 21
2.5.6 Lead Generation should be Complemented by Auxiliary Technologies to Characterize Hits 21
2.5.7 Phenotypic Screens are Often Complemented by a Chemical Biology Arm 22
2.5.8 The Lead Generation Strategy is Defined by the Budget Allocated 22
2.5.9 Cost-Efficient but Information-Rich Lead Generation Strategies 23
2.5.10 The Revival of Potency as the Most Important Lead Criterion? 24
2.5.11 When has a LG Campaign Delivered Successfully? 27

References 31

Part II The Importance of Target Identification for Generating Successful Leads 35

3 Ligandability of Drug Targets: Assessment of Chemical Tractability via Experimental and In Silico Approaches 37
Udo Bauer and Alexander L. Breeze

3.1 Introduction 37

3.2 The Concept of Ligandability 39
3.2.1 General Characteristics of Ligandable Targets 39
3.3 The Intersection of Ligandability and Human Disease Target Space 40
3.3.1 Experimental Techniques for Assessing Target Ligandability 42
3.3.1.1 High-Throughput Screening and Subset/Validation Set Screening 43
3.3.1.2 Fragment Screening 44
3.4 Practical Examples of the Use of Fragment Screening for Ligandability Assessment 50
3.4.1 Chemical Tractability Assessment by in silico Approaches 54
3.4.1.1 Pocket-Finding Algorithms 54
3.4.1.2 Discrimination Functions and Validation Sets 55
3.4.1.3 Simulation-Based Methods for Identifying Interaction Potentials 56
3.5 Conclusions and Outlook 56

References 58

4 Chemistry-Driven Target Identification 63
Iván Cornella-Taracido, Ryan Hicks, Ola Engkvist, Adam Hendricks, Ronald Tomlinson, and M. Paola Castaldi

4.1 Introduction 63
5.3.2.3 Layout 106
5.3.3 Focus on Synthetic Feasibility 107
5.3.3.1 Multicomponent Reactions 107
5.3.3.2 Click Chemistry 108
5.3.3.3 Diversity-oriented Synthesis 108
5.3.4 Structure-driven Approaches 109
5.3.4.1 Privileged Structures 110
5.3.4.2 Structure-driven Approaches Toward Unchartered Territory 112
5.3.5 Target Focus 114
5.3.5.1 Kinases 114
5.3.5.2 G-Protein-Coupled Receptors 115
5.3.5.3 Ion Channels 116
5.3.5.4 Protein-Protein Interactions 117
5.4 Other Concepts 117
5.4.1 Natural Products 118
5.4.2 DNA-Encoded Libraries 119
5.4.3 Spatially Addressed Libraries 120
5.4.4 On-bead Screening 120
5.4.5 Dynamic Combinatorial Chemistry 121
5.4.6 Cocktails and Mixtures 121
5.5 Summary and Outlook 122
References 123

6 Fragment-Based Lead Generation 133
Ivan V. Efremov and Daniel A. Erlanson
6.1 Introduction 133
6.2 Screening Methods 135
6.3 Hit Validation 137
6.4 Ligand Efficiency and Other Metrics 138
6.5 Hit Optimization 139
6.6 Fragment Growing 140
6.7 Fragment Linking 144
6.8 Protein-Protein Interactions 147
6.9 GPCRs 151
6.10 Computational Approaches 152
6.11 Conclusions 153
References 154

7 Rational Hit Generation 159
Bernd Wellenzohn and Alexander Weber

7.1 Introduction 159
7.2 Lead Generation: Transition State and Substrate Analogs 161
7.3 Hit Generation by Rational Library Design 165
7.4 Hit Generation by Virtual Screening 167
7.4.1 Structure–based VS in Enumerated Molecules 170
7.4.2 Ligand–based VS in Nonenumerated Virtual Chemical Spaces 171
7.5 Hit Generation by Scaffold Replacement Technologies 173
7.6 Hit Generation by Chemogenomics Approaches 174
7.7 Summary 178
References 178

8 Competitive Intelligence–based Lead Generation and Fast Follower Approaches 183
Yu Jiang, Ziping Liu, Jörg Holenz, and Hua Yang

8.1 Introduction 183
8.2 Competitive Intelligence–based Approach 185
8.2.1 Example A: A Case Study for the Hybrid Strategy 190
8.2.2 Example C: A Case Study for the Fused Strategy 192
8.2.3 Example C: A Case Study for the Fused Strategy 193
8.2.4 Example D: A Case Study for the Fused Strategy 196
8.2.5 Example E: A Case Study for the Chimera Strategy 197
8.3 Fast Follower Approach 201
8.3.1 Salfanilamide–based Fast Follower Approaches 202
8.3.2 Omeprazole–based Fast Follower Approaches 203
8.3.3 Rimonabant–based Fast Follower Approach 210
References 214

9 Selective Optimization of Side Activities: An Alternative and Promising Strategy for Lead Generation 221
Norbert Handler, Andrea Wolkerstorfer, and Helmut Buschmann

9.1 Introduction 221
Jinqiao Wan, Dengfeng Dou, Hongmei Song, Xian–Hui Wu, Xuemin Cheng, and Jin Li

10.1 Introduction 259

10.2 DNA–Encoded Library Technology in Lead Generation 260

10.2.1 Background 260

10.2.2 DNA–Recorded Synthesis–Assisted Libraries 262

10.2.3 DNA–Templated Synthesis–Assisted Libraries 264

10.2.4 Encoded Self–Assembling Chemical Libraries 266

10.2.5 Summary and Perspective 267

10.3 Stapled Peptide 276

10.3.1 Background 276

10.3.2 Structure, Design, and Synthesis of Stapled Peptide 278

10.3.2.1 Stapled Peptide Structure 278

10.3.2.2 Stapled Peptide Design 280

10.3.2.3 Stapled Peptide Synthesis 282

10.3.3 Stapled Peptide Solution α–Helix Conversion Measurement 283

10.3.4 Stapled Peptide Affinity Evaluation and α–Helix Content Correlation 284

10.3.4.1 Surface Plasmon Resonance Binding Assays 284

10.3.4.2 Fluorescence Polarization Assay 284

10.3.4.3 Stapled Peptide Affinity and α–Helix Content Correlation 285

10.3.5 Stapled Peptide Permeability 286

10.3.6 Peptide Stability Assay 288

10.3.7 Outlook 288

10.4 Phenotypic Screening 289

10.4.1 Introduction 289

10.4.2 Basics for Establishing a Phenotypic Screen 291

10.4.2.1 Identify a Druggable Phenotype and the Type of Readout 291

10.4.2.2 Assay Design 291

10.4.2.3 Hit Selection and Secondary Assay 291

10.4.3 Typical Phenotypic Assays 292

10.4.3.1 Cell–Viability Assay 292

10.4.3.2 Fluorescent Imaging Plate Reader Technology 293

10.4.3.3 High–Content Screening 293
Part IV Converting Hits to Successful Leads 329

12 A Medicinal Chemistry Perspective on the Hit-to-Lead Phase in the Current Era of Drug Discovery 331
Dean G. Brown

12.1 Introduction 331
12.2 Active to Hit Processes 333
12.3 Target Potency: Energetics of Binding 336
12.4 Addressing Vast Chemical Space: HtL Strategies 345
12.5 Matched Pair Analysis 348
12.6 The Role of Hydrophobicity and HtL 351
12.7 Probing H-Bond Donors and Acceptors 353
12.8 Structure Based DD in HtL 356
12.9 Statistical Molecular Design 358
12.10 Hit to Lead is not Lead Optimization 359
12.11 Summary 362

References 363

13 Molecular Recognition and Its Importance for Fragment-Based Lead Generation and Hit-to-Lead 367
Thorsten Nowak

13.1 Introduction 367
13.2 Brief Summary of the Main Factors that Govern Molecular Interactions 368
13.3 Thermodynamics of Molecular Interactions and Impact on Hit Finding and Optimization 369
13.4 Enthalpy as a Key Decision Tool in Medicinal Chemistry 371
13.5 Importance of Enthalpic Interactions: Drivers of Selectivity and Specificity? 373
13.6 Fragment Screening Hit Optimization: Fragment Linking 374
13.7 Interstitial Waters and Their Usefulness: Case Studies on HSP–90 381
13.8 Fragments to Find Hot Spots in Binding Pockets 385
13.9 Nonclassical Hydrogen Bonds Interactions of Halogen Atoms with -Systems and Carbonyl Groups: Factor Xa and Cathepsin L 386
13.10 Binding Mode Dependency of the Experimental Conditions and Chemical Framework of Ligand 390
13.11 Cooperativity in Binding: DAO or DAAO D-Amino Acid Oxidase 391

References 394

14 Affinity-Based Screening Methodologies and Their Application in the Hit-to-Lead Phase 401
Stefan Geschwindner

14.1 Introduction 401
18 Lead Generation Paved the Way for the Discovery of a Novel H3 Inverse Agonist Clinical Candidate 515
Christophe Genicot and Laurent Provins

18.1 Introduction 515
18.2 Hit Identification 517
18.3 Lead Generation 521
18.3.1 Exploration of Oxazoline Substitution 523
18.3.2 Rigidification of Propoxy Linker 531
18.3.3 Oxazoline/Oxazole Surrogates: Lactams 533
18.3.4 Conclusions 536
18.4 Lead Optimization and Candidate Selection 537
18.5 Conclusions 543

Acknowledgments 544

References 544

19 Vorapaxar: From Lead Identification to FDA Approval 547
Samuel Chackalamannil and Mariappan Chelliah

19.1 Introduction 547
19.2 Background Information on Antiplatelet Agents 549
19.3 Thrombin Receptor (Protease–activated Receptor–1) Antagonists as a Novel Class of Antiplatelet Agents 550
19.4 Mechanism of Thrombin Receptor Activation 550
19.5 Preclinical Data Supporting the Antiplatelet Effect of Thrombin Receptor Antagonists 551
19.6 Himbacine–derived Thrombin Receptor Antagonists 552
19.6.1 Lead Identification 552
19.6.2 Lead Generation of Himbacine–derived Thrombin Receptor Antagonist Hit 553
19.6.2.1 Structure Activity Relationship Studies 555
19.6.2.2 First–Generation Thrombin Receptor Antagonists 556
19.6.2.3 In vivo Metabolism of Himbacine Derivatives 558
19.6.2.4 Generation of Aryl Himbacine Leads 561
19.6.2.5 Second–Generation Leads that Incorporate Heteroatoms in the C–ring 562
19.6.2.6 Identification of nor–seco Himbacine Lead 564
19.6.3 Discovery of Vorapaxar (SCH 530348) 565
19.6.3.1 Clinical Studies of Vorapaxar 567
19.7 Conclusions 569
20 Lead Generation Approaches Delivering Inhaled 2-Adrenoreceptor Agonist Drug Candidates 575
Michael Stocks and Lilian Alcaraz

20.1 Introduction 575

20.2 Lead Generation Exercises to Discover 2AR Agonist Clinical Candidates 577

20.3 AstraZeneca Lead Generation Exercises to Discover 2AR Agonist Clinical Candidates 587

20.4 Summary 593

References 593

21 GPR81 HTS Case Study 597
Eric Wellner and Ola Fjellström

21.1 General Remarks 597

21.2 The Target 598

21.3 Screening Cascade 599

21.4 Compound Selection (10 K Validation Set) 602

21.5 HTS 606

21.5.1 CSE 608

21.5.2 Single-Concentration Counterscreen 614

21.5.3 Clustering 615

21.5.4 Cluster Expansion and Nearest Neighbours 618

21.6 Hit Evaluation 618

21.6.1 Potency, Efficacy, and Curves 618

21.6.2 Binding Kinetics 621

21.6.3 Concentration Response Counterscreen 622

21.6.4 Hit Assessment 622

21.6.4.1 Size and Lipophilicity Efficiency Assessment 622

21.6.4.2 Secondary Pharmacology Assessment 626

21.6.5 Secondary Screening Cascade and Hit Expansion 630

21.6.6 Biological Effect Assay 634

21.7 Alternative Lead Generation Strategies 638

21.7.1 Pepducins and Other Modified Peptides 641

21.8 Conclusions 645
22 Development of Influenza Virus Sialidase Inhibitors 651
Mauro Pascolutti, Robin J. Thomson, and Mark von Itzstein
22.1 Introduction 651
22.2 Targets for Anti–influenza Drug Development: Receptor Binding and Receptor Cleavage 652
22.2.1 Targeting Receptor Binding by Haemagglutinin 654
22.2.2 Targeting Receptor Destruction by Sialidase 655
22.2.3 Influenza Virus Sialidase: Structure and Mechanism 656
22.3 Development of Influenza Virus Sialidase Inhibitors 658
22.3.1 The Development of Zanamivir: Proof of Concept and First–in–Class Sialidase Inhibitor Drug 659
22.3.1.1 Template Selection 659
22.3.1.2 Structure–based Inhibitor Design 662
22.3.1.3 X–Ray Crystallographic Confirmation of Inhibitor Binding Mode 665
22.3.1.4 Selectivity for Influenza Virus Sialidase over Human Sialidases 666
22.3.1.5 Efficacy against Virus Replication 667
22.3.1.6 Mode of Administration of the Highly Polar Drug 667
22.3.1.7 Modifying the Presentation of Zanamivir: Prodrugs and Multivalency 668
22.3.2 Sialidase Inhibitor Development on Noncarbohydrate Scaffolds 671
22.3.2.1 A Sialidase Inhibitor Based on a Cyclohexene Scaffold: The Development of Oseltamivir 671
22.3.2.2 A Sialidase Inhibitor Based on a Cyclopentane Scaffold: The Development of Peramivir 673
22.3.3 Monitoring Resistance to Influenza Virus Sialidase Inhibitors 675
22.4 Summary and Future Directions 676

23 The Discovery of Cathepsin A Inhibitors: A Project–Adapted Fragment Approach Based on HTS Results 687
Sven Ruf, Christian Buning, Herman Schreuder, Wolfgang Linz, Dominik Linz, Hartmut Rütten, Georg Horstick, Markus Kohlmann, Katja Kroll, Klaus Wirth, and Thorsten Sadowski
23.1 General Background 687
23.2 Cathepsin A enzyme 687
23.2.1 Structural Biology and Catalytic Mechanism 687
23.2.2 Structural and Catalytic Functions of CatA 689
23.2.3 Tissue Distribution and Substrates 689
23.2.4 Natural Products and Synthetic Peptides as Inhibitors of CatA 690
24.16 Examples of Phenotypic Screens 733
24.17 Conclusions 741
References 741

25 A Fragmentation Enumeration Approach to Generating Novel Drug Leads 747
Pravin S. Iyer and Manoranjan Panda

25.1 Introduction 747
25.2 Principle 748
25.3 Research Methodology 748
25.3.1 Fragmentation 749
25.3.1.1 Origin of Parent Molecules 749
25.3.1.2 Cores and Daughters 749
25.3.1.3 Nonflat Cores 751
25.3.2 Intelligent Recombination and Enumeration 754
25.4 Evaluation 754
25.4.1 Preliminary Experimental Evaluation 755
25.4.2 In Silico Evaluation 755
25.4.3 Virtual Screening Using Enzyme Ligand Docking 756
25.5 Summary 758
References 759
Index 761

 Order by Fax - using the form below
 Order by Post - print the order form below and send to
 Research and Markets,
 Guinness Centre,
 Taylors Lane,
 Dublin 8,
 Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

Product Name:	Lead Generation. Methods and Strategies, Volume 67. Methods and Principles in Medicinal Chemistry
Web Address:	http://www.researchandmarkets.com/reports/2866161/
Office Code:	SCEBLDN3

Product Format
Please select the product format and quantity you require:

| Quantity | Hard Copy (Hard Back): USD 313 + USD 29 Shipping/Handling |

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title:	Mr ☐ Mrs ☐ Dr ☐ Miss ☐ Ms ☐ Prof ☐
First Name:	
Last Name:	
Email Address: *	
Job Title:	
Organisation:	
Address:	
City:	
Postal / Zip Code:	
Country:	
Phone Number:	
Fax Number:	

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:

Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:

<table>
<thead>
<tr>
<th>Account number</th>
<th>833 130 83</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sort code</td>
<td>98-53-30</td>
</tr>
<tr>
<td>Swift code</td>
<td>ULSBIE2D</td>
</tr>
<tr>
<td>IBAN number</td>
<td>IE78ULSB98533083313083</td>
</tr>
<tr>
<td>Bank Address</td>
<td>Ulster Bank, 27-35 Main Street, Blackrock, Co. Dublin, Ireland.</td>
</tr>
</tbody>
</table>

If you have a Marketing Code please enter it below:

Marketing Code: ________________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:

(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World