Plant Genes, Genomes and Genetics

Description: Plant Genes, Genomes and Genetics provides comprehensive treatment of all aspects of plant gene expression. Unique in explaining the subject from a plant perspective, it highlights the importance of gene expression in how plants interface with the modern world, and notes the many aspects of gene expression that were first discovered in plants.

This reference covers topics ranging from plant genome structure and the key control points in how genes are expressed, to the mechanisms by which proteins are generated and how their activities are controlled and altered by posttranslational modifications.

Edited by authorities in the field, with contributions from invited experts, this textbook also includes:

- specific examples that highlight when and how plants operate differently from other organisms;
- special sections that provide in-depth discussions of particular issues;
- end-of-chapter problems to help students recapitulate the main concepts;
- full colour, with clear diagrams and illustrations showing important processes in plant gene expression;
- a companion website with PowerPoint slides, downloadable figures, and answers to the questions posed in the book

While primarily aimed at upper level undergraduates and graduate students in Plant Biology, this text is equally suited for advanced Agronomy and Crop Science students inclined to understand molecular aspects of organismal phenomena. It is invaluable for any professional entering the field of plant biology.

Contents:

Acknowledgements xi
Introduction xiii
About the Companion Website xix
PART I: PLANT GENOMES AND GENES
Chapter 1 Plant genetic material 3
1.1 DNA is the genetic material of all living organisms, including plants 3
1.2 The plant cell contains three independent genomes 8
1.3 A gene is a complete set of instructions for building an RNA molecule 10
1.4 Genes include coding sequences and regulatory sequences 11
1.5 Nuclear genome size in plants is variable but the numbers of protein-coding, non-transposable element genes are roughly the same 12
1.6 Genomic DNA is packaged in chromosomes 15
1.7 Summary 15
1.8 Problems 15
References 16
Chapter 2 The shifting genomic landscape 17
2.1 The genomes of individual plants can differ in many ways 17
2.2 Differences in sequences between plants provide clues about gene function 20

2.3 SNPs and length mutations in simple sequence repeats are useful tools for genome mapping and marker assisted selection 22

2.4 Genome size and chromosome number are variable 28

2.5 Segments of DNA are often duplicated and can recombine 30

2.6 Some genes are copied nearby in the genome 31

2.7 Whole genome duplications are common in plants 34

2.8 Whole genome duplication has many effects on the genome and on gene function 37

2.9 Summary 41

2.10 Problems 42

Further reading 42

References 42

Chapter 3 Transposable elements 45

3.1 Transposable elements are common in genomes of all organisms 45

3.2 Retrotransposons are mainly responsible for increases in genome size 46

3.3 DNA transposons create small mutations when they insert and excise 52

3.4 Transposable elements move genes and change their regulation 57

3.5 How are transposable elements controlled? 60

3.6 Summary 60

3.7 Problems 61

References 61

Chapter 4 Chromatin, centromeres and telomeres 63

4.1 Chromosomes are made up of chromatin, a complex of DNA and protein 63

4.2 Telomeres make up the ends of chromosomes 67

4.3 The chromosome middles centromeres 71

4.4 Summary 77

4.5 Problems 77

Further reading 77

References 77

Chapter 5 Genomes of organelles 79

5.1 Plastids and mitochondria are descendants of free-living bacteria 79

5.2 Organellar genes have been transferred to the nuclear genome 80
5.3 Organellar genes sometimes include introns 82
5.4 Organellar mRNA is often edited 82
5.5 Mitochondrial genomes contain fewer genes than chloroplasts 84
5.6 Plant mitochondrial genomes are large and undergo frequent recombination 87
5.7 All plastid genomes in a cell are identical 91
5.8 Plastid genomes are similar among land plants but contain some structural rearrangements 93
5.9 Summary 95
5.10 Problems 95
Further reading 95
References 95
PART II: TRANSCRIBING PLANT GENES
Chapter 6 RNA 99
6.1 RNA links components of the Central Dogma 99
6.2 Structure provides RNA with unique properties 102
6.3 RNA has multiple regulatory activities 105
6.4 Summary 108
6.5 Problems 108
References 109
Chapter 7 The plant RNA polymerases 111
7.1 Transcription makes RNA from DNA 111
7.2 Varying numbers of RNA polymerases in the different kingdoms 112
7.3 RNA polymerase I transcribes rRNAs 114
7.4 RNA polymerase III recruitment to upstream and internal promoters 116
7.5 Plant-specific RNP–IV and RNP–V participate in transcriptional gene silencing 117
7.6 Organelles have their own set of RNA polymerases 117
7.7 Summary 118
7.8 Problems 118
References 118
Chapter 8 Making mRNAs Control of transcription by RNA polymerase II 121
8.1 RNA polymerase II transcribes protein-coding genes 121
8.2 The structure of RNA polymerase II reveals how it functions 121
8.3 The core promoter 123
8.4 Initiation of transcription 125
8.5 The mediator complex 127
8.6 Transcription elongation: the role of RNP-II phosphorylation 128
8.7 RNP-II pausing and termination 129
8.8 Transcription re-initiation 130
8.9 Summary 130
8.10 Problems 130
References 130

Chapter 9 Transcription factors interpret cis-regulatory information 133
9.1 Information on when, where and how much a gene is expressed is codified by the gene’s regulatory regions 133
9.2 Identifying regulatory regions requires the use of reporter genes 134
9.3 Gene regulatory regions have a modular structure 135
9.4 Enhancers: Cis-regulatory elements or modules that function at a distance 137
9.5 Transcription factors interpret the gene regulatory code 138
9.6 Transcription factors can be classified in families 138
9.7 How transcription factors bind DNA 139
9.8 Modular structure of transcription factors 143
9.9 Organization of transcription factors into gene regulatory grids and networks 146
9.10 Summary 146
9.11 Problems 146
More challenging problems 147
References 147

Chapter 10 Control of transcription factor activity 149
10.1 Transcription factor phosphorylation 149
10.2 Protein–protein interactions 151
10.3 Preventing transcription factors from access to the nucleus 155
10.4 Movement of transcription factors between cells 156
10.5 Summary 158
10.6 Problems 158
References 158
Chapter 14 Fate of RNA 199

14.1 Regulation of RNA continues upon export from nucleus 199
14.2 Mechanisms for RNA turnover 199
14.3 RNA surveillance mechanisms 201
14.4 RNA sorting 202
14.5 RNA movement 203
14.6 Summary 204
14.7 Problems 204

Further reading 205
References 205

Chapter 15 Translation of RNA 207

15.1 Translation: a key aspect of gene expression 207
15.2 Initiation 209
15.3 Elongation 209
15.4 Termination 210
15.5 Tools for studying the regulation of translation 211
15.6 Specific translational control mechanisms 211
15.7 Summary 213
15.8 Problems 214

Further reading 214
References 214

Chapter 16 Protein folding and transport 215

16.1 The pathway to a protein’s function is a complicated matter 215
16.2 Protein folding and assembly 215
16.3 Protein targeting 218
16.4 Co-translational targeting 218
16.5 Post-translational targeting 219
16.6 Post-translational modifications regulating function 220
16.7 Summary 222
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct and select the format(s) you require.

Product Name: Plant Genes, Genomes and Genetics
Web Address: http://www.researchandmarkets.com/reports/2883006/
Office Code: SCD2YAWV

Product Formats
Please select the product formats and quantity you require:

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard Copy (Hard Back):</td>
<td>USD 121 + USD 29 Shipping/Handling</td>
</tr>
<tr>
<td>Hard Copy (Paper back):</td>
<td>USD 96 + USD 29 Shipping/Handling</td>
</tr>
</tbody>
</table>

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title: Mr ☐ Mrs ☐ Dr ☐ Miss ☐ Ms ☐ Prof ☐
First Name: ____________________________ Last Name: ____________________________
Email Address: *
Job Title: ______________________________
Organisation: __________________________
Address: __
City: ________________________________
Postal / Zip Code: __
Country: __________________________
Phone Number: __________________________
Fax Number: __

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: ____________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp