Introductory Quantum Mechanics for Applied Nanotechnology

Description: This textbook covers fundamental quantum mechanics from an application's perspective, considering optoelectronic devices, biological sensors and molecular imagers as well as solar cells and various kinds of field effect transistors, e.g. nanowire and spin FETs.

The book provides a brief review of classical and statistical mechanics and electromagnetism, and then turns to the quantum treatment of atoms, molecules, and chemical bonds and the topics covered are focused on the multidisciplinary application of nanotechnology.

Aiming at senior undergraduate and graduate students in nanotechnology related areas like physics, materials science, and engineering, the book can be used in dedicated courses at universities and for focused training courses for practitioners, e.g., in the semiconductor industry and related nanotechnology companies.

The author is Professor Dae Mann Kim from the Korea Institute for Advanced Study who has been teaching Quantum Mechanics to engineering, material science and physics students for over 30 years in USA and Asia.

Contents:

Preface XI

1 Review of Classical Theories 1
 1.1 Harmonic Oscillator 1
 1.2 Boltzmann Distribution Function 3
 1.3 Maxwell's Equations and EMWaves 6

Suggested Readings 11

2 Milestones Leading to Quantum Mechanics 13
 2.1 Blackbody Radiation and Quantum of Energy 13
 2.2 Photoelectric Effect and Photon 14
 2.3 Compton Scattering 16
 2.4 de BroglieWavelength and Duality of Matter 17
 2.5 Hydrogen Atom and Spectroscopy 18

Suggested Readings 22

3 SchrödingerWave Equation 23
 3.1 Operator Algebra and Basic Postulates 23
 3.2 Eigenequation, Eigenfuntion and Eigenvalue 24
 3.3 Properties of Eigenfunctions 25
 3.4 Commutation Relation and Conjugate Variables 27
 3.5 Uncertainty Relation 29
Suggested Readings 31

4 Bound States in QuantumWell and Wire 33
4.1 Electrons in Solids 33
4.2 1D, 2D, and 3D Densities of States 35
4.3 Particle in QuantumWell 38
4.4 QuantumWell and Wire 40

Suggested Readings 43

5 Scattering and Tunneling of 1D Particle 45
5.1 Scattering at the Step Potential 45
5.2 Scattering from a QuantumWell 48
5.3 Tunneling 50
5.3.1 Direct and Fowler–Nordheim Tunneling 52
5.3.2 Resonant Tunneling 53
5.4 The Applications of Tunneling 56
5.4.1 Metrology and Display 57
5.4.2 Single-Electron Transistor 58

Suggested Readings 61

6 Energy Bands in Solids 63
6.1 Bloch Wavefunction in Kronig–Penney Potential 63
6.2 E–k Dispersion and Energy Bands 67
6.3 The Motion of Electrons in Energy Bands 70
6.4 Energy Bands and Resonant Tunneling 71

Suggested Readings 74

7 The Quantum Treatment of Harmonic Oscillator 75
7.1 Energy Eigenfunction and Energy Quantization 75
7.2 The Properties of Eigenfunctions 78
7.3 HO in Linearly Superposed State 81
7.4 The Operator Treatment of HO 83
7.4.1 Creation and Annihilation Operators and Phonons 84

Suggested Readings 86

8 Schrödinger Treatment of Hydrogen Atom 87
8.1 Angular Momentum Operators 87
8.2 Spherical Harmonics and Spatial Quantization 90
8.3 The H–Atom and Electron Proton Interaction 93
8.3.1 Atomic Radius and the Energy Eigenfunction 97
8.3.2 Eigenfunction and Atomic Orbital 98
8.3.3 Doppler Shift 100
Suggested Readings 104
9 The Perturbation Theory 105
9.1 Time–Independent Perturbation Theory 105
9.1.1 Stark Effect in H–Atom 110
9.2 Time–Dependent Perturbation Theory 111
9.2.1 Fermi’s Golden Rule 113
Suggested Readings 116
10 System of Identical Particles and Electron Spin 117
10.1 Electron Spin 117
10.1.1 Pauli Spin Matrices 118
10.2 Two–Electron System 118
10.2.1 Helium Atom 120
10.2.2 Multi–Electron Atoms and Periodic Table 124
10.3 Interaction of Electron Spin with Magnetic Field 126
10.3.1 Spin Orbit Coupling and Fine Structure 127
10.3.2 Zeeman Effect 129
10.4 Electron Paramagnetic Resonance 131
Suggested Readings 135
11 Molecules and Chemical Bonds 137
11.1 Ionized Hydrogen Molecule 137
11.2 H2 Molecule and Heitler–London Theory 141
11.3 Ionic Bond 144
11.4 van der Waals Attraction 146
11.5 Polyatomic Molecules and Hybridized Orbitals 148
Suggested Readings 150
12 Molecular Spectra 151
16.3 Generation and Recombination Currents 209
16.3.1 Trap-Assisted Recombination and Generation 210
Suggested Readings 215
17 P–N Junction Diode: I–V Behavior and Device Physics 217
17.1 The p–n Junction in Equilibrium 217
17.2 The p–n Junction under Bias 220
17.3 Ideal Diode I–V Behavior 223
17.4 Nonideal I–V Behavior 226
Suggested Readings 229
18 P–N Junction Diode: Applications 231
18.1 Optical Absorption 231
18.2 Photodiode 233
18.3 Solar Cell 235
18.4 LED and LD 238
Suggested Readings 243
19 Field-Effect Transistors 245
19.1 The Modeling of MOSFET I–V 245
19.1.1 Channel Inversion in NMOS 246
19.1.2 Threshold Voltage and ON Current 250
19.1.3 Subthreshold Current ISUB 251
19.2 Silicon Nanowire Field-Effect Transistor 252
19.2.1 Short-Channel I–V Behavior in NWFET 256
19.2.2 Ballistic NWFET 257
19.3 Tunneling NWFET as Low-Power Device 259
Suggested Readings 262
20 The Application and Novel Kinds of FETs 263
20.1 Nonvolatile Flash EEPROM Cell 263
20.2 Semiconductor Solar Cells 266
20.3 Biosensor 268
20.4 Spin Field-Effect Transistor 271
20.5 Spin Qubits and Quantum Computing 273
Suggested Readings 278
Ordering:

Order Online - http://www.researchandmarkets.com/reports/2936026/

Order by Fax - using the form below

Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit
http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

Product Name: Introductory Quantum Mechanics for Applied Nanotechnology
Web Address: http://www.researchandmarkets.com/reports/2936026/
Office Code: SCBRWXUP

Product Format
Please select the product format and quantity you require:

- Hard Copy (Paper back): USD 103 + USD 29 Shipping/Handling

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title: [] Mr [] Mrs [] Dr [] Miss [] Ms [] Prof
First Name: [] Last Name: []
Email Address: * []
Job Title: []
Organisation: []
Address: []
City: []
Postal / Zip Code: []
Country: []
Phone Number: []
Fax Number: []

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: _______________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp