Mechanical Vibrations. Theory and Application to Structural Dynamics. 3rd Edition

Description: Mechanical Vibrations: Theory and Application to Structural Dynamics, Third Edition is a comprehensively updated new edition of the popular textbook. It presents the theory of vibrations in the context of structural analysis and covers applications in mechanical and aerospace engineering. Although keeping the same overall structure, the content of this new edition has been significantly revised in order to cover new topics, enhance focus on selected important issues, provide sets of exercises and improve the quality of presentation.

Without being exhaustive (see the Introduction for a comprehensive list), some key features include:

- A systematic approach to dynamic reduction and substructuring, based on duality between mechanical and admittance concepts
- An introduction to experimental modal analysis and identification methods
- An improved, more physical presentation of wave propagation phenomena
- A comprehensive presentation of current practice for solving large eigenproblems, focusing on the efficient linear solution of large, sparse and possibly singular systems
- A deeply revised description of time integration schemes, providing framework for the rigorous accuracy/stability analysis of now widely used algorithms such as HHT and Generalized-
- Solved exercises and end of chapter homework problems
- A companion website hosting supplementary material

With revised, coherent and uniform notation, Mechanical Vibrations: Theory and Application to Structural Dynamics, Third Edition is a must-have textbook for graduate students working with vibration in mechanical, aerospace and civil engineering, and is also an excellent reference for researchers and industry practitioners.

Contents:

Foreword xiii
Preface xv
Introduction 1
Suggested Bibliography 7
1 Analytical Dynamics of Discrete Systems 13
1.1 Principle of Virtual Work for a Particle 14
1.1.1 Nonconstrained Particle 14
1.1.2 Constrained Particle 15
1.2 Extension to a System of Particles 17
1.2.1 Virtual Work Principle for N Particles 17
1.2.2 The Kinematic Constraints 18
1.2.3 Concept of Generalized Displacements 20
1.3 Hamilton's Principle for Conservative Systems and Lagrange Equations 23
1.3.1 Structure of Kinetic Energy and Classification of Inertia Forces 27
1.3.2 Energy Conservation in a System with Scleronomic Constraints 29
1.3.3 Classification of Generalized Forces 32
1.4 Lagrange Equations in the General Case 36
1.5 Lagrange Equations for Impulsive Loading 39
1.5.1 Impulsive Loading of a Mass Particle 39
1.5.2 Impulsive Loading for a System of Particles 42
1.6 Dynamics of Constrained Systems 44
1.7 Exercises 46
1.7.1 Solved Exercises 46
1.7.2 Selected Exercises 53
References 54
2 Undamped Vibrations of n-Degree-of-Freedom Systems 57
2.1 Linear Vibrations about an Equilibrium Configuration 59
2.1.1 Vibrations about a Stable Equilibrium Position 59
2.1.2 Free Vibrations about an Equilibrium Configuration Corresponding to Steady Motion 63
2.1.3 Vibrations about a Neutrally Stable Equilibrium Position 66
2.2 Normal Modes of Vibration 67
2.2.1 Systems with a Stable Equilibrium Configuration 68
2.2.2 Systems with a Neutrally Stable Equilibrium Position 69
2.3 Orthogonality of Vibration Eigenmodes 70
2.3.1 Orthogonality of Elastic Modes with Distinct Frequencies 70
2.3.2 Degeneracy Theorem and Generalized Orthogonality Relationships 72
2.3.3 Orthogonality Relationships Including Rigid-body Modes 75
2.4 Vector and Matrix Spectral Expansions Using Eigenmodes 76
2.5 Free Vibrations Induced by Nonzero Initial Conditions 77
2.5.1 Systems with a Stable Equilibrium Position 77
2.5.2 Systems with Neutrally Stable Equilibrium Position 82
2.6 Response to Applied Forces: Forced Harmonic Response 83
2.6.1 Harmonic Response, Impedance and Admittance Matrices 84
2.6.2 Mode Superposition and Spectral Expansion of the Admittance Matrix 84
2.6.3 Statically Exact Expansion of the Admittance Matrix 88
2.6.4 Pseudo-resonance and Resonance 89
2.6.5 Normal Excitation Modes 90
2.7 Response to Applied Forces: Response in the Time Domain 91
2.7.1 Mode Superposition and Normal Equations 91
2.7.2 Impulse Response and Time Integration of the Normal Equations 92
2.7.3 Step Response and Time Integration of the Normal Equations 94
2.7.4 Direct Integration of the Transient Response 95
2.8 Modal Approximations of Dynamic Responses 95
2.8.1 Response Truncation and Mode Displacement Method 96
2.8.2 Mode Acceleration Method 97
2.8.3 Mode Acceleration and Model Reduction on Selected Coordinates 98
2.9 Response to Support Motion 101
2.9.1 Motion Imposed to a Subset of Degrees of Freedom 101
2.9.2 Transformation to Normal Coordinates 103
2.9.3 Mechanical Impedance on Supports and Its Statically Exact Expansion 105
2.9.4 System Submitted to Global Support Acceleration 108
2.9.5 Effective Modal Masses 109
2.9.6 Method of Additional Masses 110
2.10 Variational Methods for Eigenvalue Characterization 111
2.10.1 Rayleigh Quotient 111
2.10.2 Principle of Best Approximation to a Given Eigenvalue 112
2.10.3 Recurrent Variational Procedure for Eigenvalue Analysis 113
2.10.4 Eigensolutions of Constrained Systems: General Comparison Principle or Monotonicity Principle 114
2.10.5 Courant’s Minimax Principle to Evaluate Eigenvalues Independently of Each Other 116
2.10.6 Rayleigh’s Theorem on Constraints (Eigenvalue Bracketing) 117
2.11 Conservative Rotating Systems 119
2.11.1 Energy Conservation in the Absence of External Force 119
2.11.2 Properties of the Eigensolutions of the Conservative Rotating System 119
2.11.3 State–Space Form of Equations of Motion 121
2.11.4 Eigenvalue Problem in Symmetrical Form 123
2.11.5 Orthogonality Relationships 126
2.11.6 Response to Nonzero Initial Conditions 128
2.11.7 Response to External Excitation 130
2.12 Exercises 130
2.12.1 Solved Exercises 130
2.12.2 Selected Exercises 143
References 148

3 Damped Vibrations of n–Degree–of–Freedom Systems 149
3.1 Damped Oscillations in Terms of Normal Eigensolutions of the Undamped System 151
3.1.1 Normal Equations for a Damped System 152
3.1.2 Modal Damping Assumption for Lightly Damped Structures 153
3.1.3 Constructing the Damping Matrix through Modal Expansion 158
3.2 Forced Harmonic Response 160
3.2.1 The Case of Light Viscous Damping 160
3.2.2 Hysteretic Damping 162
3.2.3 Force Appropriation Testing 164
3.2.4 The Characteristic Phase Lag Theory 170
3.3 State–Space Formulation of Damped Systems 174
3.3.1 Eigenvalue Problem and Solution of the Homogeneous Case 175
3.3.2 General Solution for the Nonhomogeneous Case 178
3.3.3 Harmonic Response 179
3.4 Experimental Methods of Modal Identification 180
3.4.1 The Least–Squares Complex Exponential Method 182
3.4.2 Discrete Fourier Transform 187
3.4.3 The Rational Fraction Polynomial Method 190
3.4.4 Estimating the Modes of the Associated Undamped System 195
3.4.5 Example: Experimental Modal Analysis of a Bellmouth 196
3.5 Exercises 199
3.5.1 Solved Exercises 199
3.6 Proposed Exercises 207
References 208

4 Continuous Systems 211
4.1 Kinematic Description of the Dynamic Behaviour of Continuous Systems: Hamilton’s Principle 213
4.1.1 Definitions 213
4.1.2 Strain Evaluation: Green’s Measure 214
4.1.3 Stress Strain Relationships 219
4.1.4 Displacement Variational Principle 221
4.1.5 Derivation of Equations of Motion 221
4.1.6 The Linear Case and Nonlinear Effects 223
4.2 Free Vibrations of Linear Continuous Systems and Response to External Excitation 231
4.2.1 Eigenvalue Problem 231
4.2.2 Orthogonality of Eigensolutions 233
4.2.3 Response to External Excitation: Mode Superposition (Homogeneous Spatial Boundary Conditions) 234
4.2.4 Response to External Excitation: Mode Superposition (Nonhomogeneous Spatial Boundary Conditions) 237
4.2.5 Reciprocity Principle for Harmonic Motion 241
4.3 One–Dimensional Continuous Systems 243
4.3.1 The Bar in Extension 244
4.3.2 Transverse Vibrations of a Taut String 258
4.3.3 Transverse Vibration of Beams with No Shear Deflection 263
4.3.4 Transverse Vibration of Beams Including Shear Deflection 277
4.3.5 Travelling Waves in Beams 285
4.4 Bending Vibrations of Thin Plates 290
4.4.1 Kinematic Assumptions 290
4.4.2 Strain Expressions 291
4.4.3 Stress Strain Relationships 292
4.4.4 Definition of Curvatures 293
4.4.5 Moment Curvature Relationships 293
4.4.6 Frame Transformation for Bending Moments 295
4.4.7 Computation of Strain Energy 295
4.4.8 Expression of Hamilton’s Principle 296
4.4.9 Plate Equations of Motion Derived from Hamilton’s Principle 298
4.4.10 Influence of In–Plane Initial Stresses on Plate Vibration 303
4.4.11 Free Vibrations of the Rectangular Plate 305
4.4.12 Vibrations of Circular Plates 308
4.4.13 An Application of Plate Vibration: The Ultrasonic Wave Motor 311
4.5 Wave Propagation in a Homogeneous Elastic Medium

4.5.1 The Navier Equations in Linear Dynamic Analysis

4.5.2 Plane Elastic Waves

4.5.3 Surface Waves

4.6 Solved Exercises

4.7 Proposed Exercises

References

5 Approximation of Continuous Systems by Displacement Methods

5.1 The Rayleigh Ritz Method

5.1.1 Choice of Approximation Functions

5.1.2 Discretization of the Displacement Variational Principle

5.1.3 Computation of Eigensolutions by the Rayleigh Ritz Method

5.1.4 Computation of the Response to External Loading by the Rayleigh Ritz Method

5.1.5 The Case of Prestressed Structures

5.2 Applications of the Rayleigh Ritz Method to Continuous Systems

5.2.1 The Clamped Free Uniform Bar

5.2.2 The Clamped Free Uniform Beam

5.2.3 The Uniform Rectangular Plate

5.3 The Finite Element Method

5.3.1 The Bar in Extension

5.3.2 Truss Frames

5.3.3 Beams in Bending without Shear Deflection

5.3.4 Three-Dimensional Beam Element without Shear Deflection

5.3.5 Beams in Bending with Shear Deformation

5.4 Exercises

5.4.1 Solved Exercises

5.4.2 Selected Exercises

References

6 Solution Methods for the Eigenvalue Problem

6.1 General considerations

6.1.1 Classification of Solution Methods
7.3.3 Accuracy Analysis of Equilibrium Averaging Methods 542
7.3.4 Stability Domain of Equilibrium Averaging Methods 543
7.3.5 Oscillatory Behaviour of the Solution 544
7.3.6 Particular Forms of Equilibrium Averaging 544

7.4 Energy Conservation 550
7.4.1 Application: The Clamped–Free Bar Excited by an end Force 552

7.5 Explicit Time Integration Using the Central Difference Algorithm 556
7.5.1 Algorithm in Terms of Velocities 556
7.5.2 Application Example: The Clamped–Free Bar Excited by an End Load 559
7.5.3 Restitution of the Exact Solution by the Central Difference Method 561

7.6 The Nonlinear Case 564
7.6.1 The Explicit Case 564
7.6.2 The Implicit Case 565
7.6.3 Time Step Size Control 571

7.7 Exercises 573
References 575
Index 577

Ordering:
Order Online - http://www.researchandmarkets.com/reports/2986088/
Order by Fax - using the form below
Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

<table>
<thead>
<tr>
<th>Product Name:</th>
<th>Mechanical Vibrations. Theory and Application to Structural Dynamics. 3rd Edition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Web Address:</td>
<td>http://www.researchandmarkets.com/reports/2986088/</td>
</tr>
<tr>
<td>Office Code:</td>
<td>SCPLYN38</td>
</tr>
</tbody>
</table>

Product Format
Please select the product format and quantity you require:

| Quantity | Hard Copy (Hard Back): | USD 114 + USD 28 Shipping/Handling |

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in **BLOCK CAPITALS**

<table>
<thead>
<tr>
<th>Title:</th>
<th>Mr []</th>
<th>Mrs []</th>
<th>Dr []</th>
<th>Miss []</th>
<th>Ms []</th>
<th>Prof []</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Name:</td>
<td></td>
<td></td>
<td></td>
<td>Last Name:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Email Address:</td>
<td>*</td>
<td></td>
<td></td>
<td>Job Title:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organisation:</td>
<td></td>
<td></td>
<td></td>
<td>Address:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>City:</td>
<td></td>
<td></td>
<td></td>
<td>Postal / Zip Code:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country:</td>
<td></td>
<td></td>
<td></td>
<td>Phone Number:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fax Number:</td>
<td></td>
<td></td>
<td></td>
<td>* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:

<table>
<thead>
<tr>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Account number</td>
<td>833 130 83</td>
</tr>
<tr>
<td>Sort code</td>
<td>98-53-30</td>
</tr>
<tr>
<td>Swift code</td>
<td>ULSBIE2D</td>
</tr>
<tr>
<td>IBAN number</td>
<td>IE78ULSB98533083313083</td>
</tr>
<tr>
<td>Bank Address</td>
<td>Ulster Bank, 27-35 Main Street, Blackrock, Co. Dublin, Ireland.</td>
</tr>
</tbody>
</table>

If you have a Marketing Code please enter it below:

Marketing Code: ________________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World