Gas Treating. Absorption Theory and Practice

Description: Gas Treating: Absorption Theory and Practice provides an introduction to the treatment of natural gas, synthesis gas and flue gas, addressing why it is necessary and the challenges involved. The book concentrates in particular on the absorption-desorption process and mass transfer coupled with chemical reaction.

Following a general introduction to gas treatment, the chemistry of CO₂, H₂S and amine systems is described, and selected topics from physical chemistry with relevance to gas treating are presented. Thereafter the absorption process is discussed in detail, column hardware is explained and the traditional mass transfer model mechanisms are presented together with mass transfer correlations. This is followed by the central point of the text in which mass transfer is combined with chemical reaction, highlighting the associated possibilities and problems. Experimental techniques, data analysis and modelling are covered, and the book concludes with a discussion on various process elements which are important in the absorption-desorption process, but are often neglected in its treatment. These include heat exchange, solution management, process flowsheet variations, choice of materials and degradation of absorbents. The text is rounded off with an overview of the current state of research in this field and a discussion of real-world applications.

This book is a practical introduction to gas treating for practicing process engineers and chemical engineers working on purification technologies and gas treatment, in particular, those working on CO₂ abatement processes, as well as post-graduate students in process engineering, chemical engineering and chemistry.

Contents:

Preface xvii
List of Abbreviations xxi
Nomenclature List xxv
1. Introduction 1
 1.1 Definitions 1
 1.2 Gas Markets, Gas Applications and Feedstock 3
 1.3 Sizes 3
 1.4 Units 4
 1.5 Ambient Conditions 7
 1.6 Objective of This Book 7
 1.7 Example Problems 7
 1.7.1 Synthesis Gas Plant 8
 1.7.2 Natural Gas Treatment 9
 1.7.3 Natural Gas Treatment for LNG 9
 1.7.4 Flue Gas CO₂ Capture from a CCGT Power Plant 9
 1.7.5 Flue Gas CO₂ Capture from a Coal Based Power Plant 11
 1.7.6 CO₂ Removal from Biogas 11
8.4.3 Capacities and Limitations 168
8.4.4 Flow Regimes on Trays 169
8.4.5 Tray Column Efficiencies 170
8.5 Spray Columns 170
8.6 Demisters 170
8.6.1 Knitted Wire Mesh Pads 172
8.6.2 Vanes or Chevrons 172
8.7 Examples 173
8.7.1 The Sepasolv Example from Chapter 7 173
8.7.2 The Selexol Example from Chapter 7 174
8.7.3 Natural Gas Treating Example 175
8.7.4 Example, Flue Gas from CCGT 176
References 178
Further Reading 179
9. Rotating Packed Beds 181
9.1 Introduction 181
9.2 Flooding and Pressure Drop 183
9.3 Fluid Flow 184
9.4 Mass Transfer Correlations 184
9.5 Application to Gas Treating 187
9.5.1 Absorption 188
9.5.2 Desorption 188
9.6 Other Salient Points 189
9.7 Challenges Associated with Rotating Packed Beds 189
References 189
10. Mass Transfer Models 193
10.1 The Film Model 193
10.2 Penetration Theory 195
10.3 Surface Renewal Theory 197
10.4 Boundary Layer Theory 198
10.5 Eddy Diffusion, Film–Penetration and More 198
11. Correlations for Mass Transfer Coefficients

11.1 Introduction

11.2 Packings: Generic Considerations

11.3 Random Packings

11.4 Structured Packings

11.5 Packed Column Correlations

11.6 Tray Columns

11.7 Examples

11.7.1 Treatment of Natural Gas for CO2 Content

11.7.2 Atmospheric Flue Gas CO2 Capture

11.7.3 Treatment of Natural Gas for H2O Content

11.7.4 Comparison of Correlations

References

Further Reading

12. Chemistry and Mass Transfer

12.1 Background

12.2 Equilibrium or Kinetics

12.3 Diffusion with Chemical Reaction

12.4 Reaction Regimes Related to Mass Transfer

12.4.1 Absorption with Slow Reaction

12.4.2 Fast First Order Irreversible Reaction

12.4.3 Instantaneous Irreversible Reaction

12.4.4 Instantaneous Reversible Reaction

12.4.5 Second Order Irreversible Reaction

12.5 Enhancement Factors

12.6 Arbitrary, Reversible Reactions and/or Parallel Reactions

12.7 Software

12.8 Numerical Examples

12.8.1 Natural Gas Problem with MEA

12.8.2 Flue Gas Problem
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.1</td>
<td>Introduction</td>
<td>333</td>
</tr>
<tr>
<td>18.2</td>
<td>Reboiler</td>
<td>333</td>
</tr>
<tr>
<td>18.2.1</td>
<td>Introduction</td>
<td>333</td>
</tr>
<tr>
<td>18.2.2</td>
<td>Heat Media</td>
<td>333</td>
</tr>
<tr>
<td>18.2.3</td>
<td>Kettle Reboiler Design</td>
<td>334</td>
</tr>
<tr>
<td>18.2.4</td>
<td>Reboiler Specifics</td>
<td>336</td>
</tr>
<tr>
<td>18.2.5</td>
<td>Alternatives to Kettle Reboiler</td>
<td>336</td>
</tr>
<tr>
<td>18.3</td>
<td>Desorber Overhead Condenser</td>
<td>337</td>
</tr>
<tr>
<td>18.3.1</td>
<td>Introduction</td>
<td>337</td>
</tr>
<tr>
<td>18.3.2</td>
<td>The Reflux System</td>
<td>337</td>
</tr>
<tr>
<td>18.3.3</td>
<td>The Condenser Design</td>
<td>337</td>
</tr>
<tr>
<td>18.3.4</td>
<td>Alternatives</td>
<td>338</td>
</tr>
<tr>
<td>18.4</td>
<td>Economiser or Lean/Rich Heat Exchanger</td>
<td>338</td>
</tr>
<tr>
<td>18.4.1</td>
<td>Introduction</td>
<td>338</td>
</tr>
<tr>
<td>18.4.2</td>
<td>Design Considerations</td>
<td>339</td>
</tr>
<tr>
<td>18.5</td>
<td>Amine Cooler</td>
<td>341</td>
</tr>
<tr>
<td>18.6</td>
<td>Water Wash Circulation Cooler</td>
<td>341</td>
</tr>
<tr>
<td>18.7</td>
<td>Heat Exchanger Alternatives</td>
<td>341</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>342</td>
</tr>
<tr>
<td>Further Reading</td>
<td></td>
<td>343</td>
</tr>
<tr>
<td>19.1</td>
<td>Solution Management</td>
<td>345</td>
</tr>
<tr>
<td>19.2</td>
<td>Contaminant Problem</td>
<td>346</td>
</tr>
<tr>
<td>19.3</td>
<td>Feed Gas Pretreatment</td>
<td>346</td>
</tr>
<tr>
<td>19.4</td>
<td>Rich Absorbent Flash</td>
<td>348</td>
</tr>
<tr>
<td>19.5</td>
<td>Filter</td>
<td>348</td>
</tr>
<tr>
<td>19.5.1</td>
<td>Active Carbon Filter</td>
<td>349</td>
</tr>
<tr>
<td>19.5.2</td>
<td>Mechanical Filter</td>
<td>350</td>
</tr>
<tr>
<td>19.6</td>
<td>Reclaiming</td>
<td>351</td>
</tr>
<tr>
<td>19.6.1</td>
<td>Traditional Reclaiming</td>
<td>351</td>
</tr>
<tr>
<td>19.6.2</td>
<td>Ion Exchange Reclaiming</td>
<td>352</td>
</tr>
<tr>
<td>19.6.3</td>
<td>Electrodialysis Reclaiming</td>
<td>353</td>
</tr>
</tbody>
</table>
25.2 Gas Export Specification 398
25.3 Natural Gas Contaminants and Foaming 398
25.4 Hydrogen Sulfide 399
25.5 Regeneration by Flash 399
25.6 Choice of Absorbents 399
Further Reading 400
26. Treating in Various Situations 401
26.1 Introduction and Environmental Perspective 401
26.2 End of Pipe Solutions 401
26.3 Sulfur Dioxide 402
26.4 Nitrogen Oxides 402
26.5 Dusts and Aerosols 403
26.6 New Challenges 403
Index 405

Ordering:
Order Online - http://www.researchandmarkets.com/reports/2986106/
Order by Fax - using the form below
Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

- Product Name: Gas Treating, Absorption Theory and Practice
- Web Address: http://www.researchandmarkets.com/reports/2986106/
- Office Code: SCDKGP9T

Product Format
Please select the product format and quantity you require:

<table>
<thead>
<tr>
<th>Quantity</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard Copy (Hard Back):</td>
<td>USD 142 + USD 29 Shipping/Handling</td>
</tr>
</tbody>
</table>

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in BLOCK CAPITALS

<table>
<thead>
<tr>
<th>Field</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title:</td>
<td>Mr ☐ Mrs ☐ Dr ☐ Miss ☐ Ms ☐ Prof ☐</td>
</tr>
<tr>
<td>First Name:</td>
<td></td>
</tr>
<tr>
<td>Last Name:</td>
<td></td>
</tr>
<tr>
<td>Email Address: *</td>
<td></td>
</tr>
<tr>
<td>Job Title:</td>
<td></td>
</tr>
<tr>
<td>Organisation:</td>
<td></td>
</tr>
<tr>
<td>Address:</td>
<td></td>
</tr>
<tr>
<td>City:</td>
<td></td>
</tr>
<tr>
<td>Postal / Zip Code:</td>
<td></td>
</tr>
<tr>
<td>Country:</td>
<td></td>
</tr>
<tr>
<td>Phone Number:</td>
<td></td>
</tr>
<tr>
<td>Fax Number:</td>
<td></td>
</tr>
</tbody>
</table>

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:
Marketing Code: ____________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World