Propellants and Explosives. Thermochemical Aspects of Combustion. 3rd Edition

Description: Explosives and propellants contain considerable chemical energy that can be converted into rapid expansion. In contrast to the simple burning of a fuel, explosives and propellants are self-contained and do not need an external supply of oxygen via air. Since their energy content inherently creates the risk of accidental triggering of the explosive reaction, the correct synthesis, formulation, and handling during production and use are of utmost importance for safety, necessitating specialist knowledge on energetic materials, their characteristics, handling and applications.

This second edition of the classic on the thermochemistry of combustion covers the thermochemical and combustion characteristics of all important types of energetic materials, such as explosives, propellants, and the new class of pyrolants, as well as related phenomena. Addressing both experimental as well as theoretical aspects, it presents the fundamental bases of the energetics of materials, deflagration and detonation, thermochemical process of decomposition and combustion, plus combustion wave structures. The book also goes on to discuss the combustion mechanisms of various types of energetic materials, propellants, and explosives, based on the heat transfer process in the combustion waves. The burning rate models are also presented as an aid to understanding the rate-controlling steps of combustion processes, thus demonstrating the relationships of burning rate versus pressure and initial temperature.

Also new to this edition are five additional chapters providing updated coverage of significant recent developments in the field, as well as the major topic of such propulsion methods as duct rockets, ramjets, pulse motors and thrusters, while appendices on flow field dynamics and shock wave propagation have also been added.

From the reviews of the first edition:

"Propellants and Explosives provides a good survey of a field that is far from simple. The essential facts are presented systematically and in a clearly understandable way, helped by many figures and photographs...The book will provide the interested reader with an easy introduction to this complex subject." --- Angewandte Chemie Intl. Ed.

Dr. Kubota received a Doctorate from Princeton University in 1973, majoring in "Solid Propellant Combustion" and "Rocket Propulsion including Ducted Rocket Engine". His current position is Senior Research Scientist of Propellant Combustion Laboratory, Asahi Kasei Chemicals. Previously, he was Director, Third Research Center, Technical Research and Development Institute (TRDI), Japan Defense Agency, which is responsible for aircraft and missiles.

Contents:

Preface XIX
Preface to the Second Edition XXI
Preface to the First Edition XXIII
1 Foundations of Pyrodynamics 1
1.1 Heat and Pressure 1
1.1.1 First Law of Thermodynamics 1
1.1.2 Specific Heat 2
1.1.3 Entropy Change 4
1.2 Thermodynamics in a Flow Field 5
1.2.1 One-Dimensional Steady-State Flow 5
1.2.1.1 Sonic Velocity and Mach Number 5
1.2.1.2 Conservation Equations in a Flow Field 6
1.2.1.3 Stagnation Point 6
1.2.2 Formation of Shock Waves 7
1.2.3 Supersonic Nozzle Flow 10
1.3 Formation of Propulsive Forces 12
1.3.1 Momentum Change and Thrust 12
1.3.2 Rocket Propulsion 14
1.3.2.1 Thrust Coefficient 15
1.3.2.2 Characteristic Velocity 15
1.3.2.3 Specific Impulse 16
1.3.3 Gun Propulsion 17
1.3.3.1 Thermochemical Process of Gun Propulsion 17
1.3.3.2 Internal Ballistics 18
1.4 Formation of Destructive Forces 20
1.4.1 Pressure and ShockWave 20
1.4.2 ShockWave Propagation and Reflection in Solid Materials 21

References 21

2 Thermochemistry of Combustion 23
2.1 Generation of Heat Energy 23
2.1.1 Chemical Bond Energy 23
2.1.2 Heat of Formation and Heat of Explosion 24
2.1.3 Thermal Equilibrium 25
2.2 Adiabatic Flame Temperature 26
2.3 Chemical Reaction 31
2.3.1 Thermal Dissociation 31
2.3.2 Reaction Rate 31
2.4 Evaluation of Chemical Energy 32
2.4.1 Heats of Formation of Reactants and Products 33
2.4.2 Oxygen Balance 33
2.4.3 Thermodynamic Energy 36

References 39

3 Combustion Wave Propagation 41

3.1 Combustion Reactions 41

3.1.1 Ignition and Combustion 41

3.1.2 Premixed and Diffusion Flames 42

3.1.3 Laminar and Turbulent Flames 42

3.2 Combustion Wave of a Premixed Gas 43

3.2.1 Governing Equations for the Combustion Wave 43

3.2.2 Rankine Hugoniot Relationships 44

3.2.3 Chapman Jouguet Points 46

3.3 Structures of Combustion Waves 49

3.3.1 Detonation Wave 49

3.3.2 Deflagration Wave 52

3.4 Ignition Reactions 54

3.4.1 The Ignition Process 54

3.4.2 Thermal Theory of Ignition 54

3.4.3 Flammability Limit 55

3.5 Combustion Waves of Energetic Materials 56

3.5.1 Thermal Theory of Burning Rate 56

3.5.1.1 Thermal Model of Combustion Wave Structure 56

3.5.1.2 Thermal Structure in the Condensed Phase 59

3.5.1.3 Thermal Structure in the Gas Phase 59

3.5.1.4 Burning Rate Model 62

3.5.2 Flame Stand–Off Distance 64

3.5.3 Burning Rate Characteristics of Energetic Materials 66

3.5.3.1 Pressure Exponent of Burning Rate 66

3.5.3.2 Temperature Sensitivity of Burning Rate 66

3.5.4 Analysis of Temperature Sensitivity of Burning Rate 66

3.5.5 Chemical Reaction Rate in Combustion Wave 69

References 71

4 Energetics of Propellants and Explosives 73
5.1.3.4 Combustion Wave Structure and Heat Transfer 124
5.1.4 Triaminoguanidine Nitrate (TAGN) 126
5.1.4.1 Thermal Decomposition 126
5.1.4.2 Burning Rate 130
5.1.4.3 Combustion Wave Structure and Heat Transfer 130
5.1.5 ADN (Ammonium Dinitramide) 132
5.1.6 HNF (Hydrazinium Nitroformate) 134
5.2 Combustion of Polymeric Materials 135
5.2.1 Nitrate Esters 135
5.2.1.1 Decomposition of Methyl Nitrate 136
5.2.1.2 Decomposition of Ethyl Nitrate 136
5.2.1.3 Overall Decomposition Process of Nitrate Esters 137
5.2.1.4 Gas–Phase Reactions of NO2 and NO 137
5.2.2 Glycidyl Azide Polymer (GAP) 139
5.2.2.1 Thermal Decomposition and Burning Rate 139
5.2.2.2 Combustion Wave Structure 142
5.2.3 Bis–azide Methyl Oxetane (BAMO) 142
5.2.3.1 Thermal Decomposition and Burning Rate 142
5.2.3.2 Combustion Wave Structure and Heat Transfer 146
References 148
6 Combustion of Double–Base Propellants 151
6.1 Combustion of NC-NG Propellants 151
6.1.1 Burning Rate Characteristics 151
6.1.2 Combustion Wave Structure 152
6.1.2.1 Gas–Phase Reaction Zones 156
6.1.2.2 A Simplified Reaction Model in Fizz Zone 157
6.1.3 Burning Rate Model 160
6.1.3.1 Model for Heat Feedback from the Gas Phase to the Condensed Phase 160
6.1.3.2 Burning Rate Calculated by a Simplified Gas–Phase Model 160
6.1.4 Energetics of the Gas Phase and Burning Rate 162
6.1.5 Temperature Sensitivity of Burning Rate 168
6.2 Combustion of NC–TMETN Propellants 171
6.2.1 Burning Rate Characteristics 171
6.2.2 Combustion Wave Structure 173
6.3 Combustion of Nitro–Azide Propellants 173
6.3.1 Burning Rate Characteristics 173
6.3.2 Combustion Wave Structure 174
6.4 Catalyzed Double–Base Propellants 176
6.4.1 Super–Rate, Plateau, and Mesa Burning 176
6.4.2 Effects of Lead Catalysts 177
6.4.2.1 Burning Rate Behavior of Catalyzed Liquid Nitrate Esters 177
6.4.2.2 Effect of Lead Compounds on Gas–Phase Reactions 178
6.4.3 Combustion of Catalyzed Double–Base Propellants 179
6.4.3.1 Burning Rate Characteristics 179
6.4.3.2 Reaction Mechanism in the Dark Zone 182
6.4.3.3 Reaction Mechanism in the Fizz Zone Structure 184
6.4.4 Combustion Models of Super–Rate, Plateau, and Mesa Burning 184
6.4.5 LiF–Catalyzed Double–Base Propellants 187
6.4.6 Ni–Catalyzed Double–Base Propellants 189
6.4.7 Suppression of Super–Rate and Plateau Burning 191

References 193

7 Combustion of Composite Propellants 195
7.1 AP Composite Propellants 195
7.1.1 Combustion Wave Structure 195
7.1.1.1 Premixed Flame of AP Particles and Diffusion Flame 195
7.1.1.2 Burning Rate Model of Granular Diffusion Theory 199
7.1.1.3 Combustion Wave Structure of Oxidizer–Rich AP Propellants 200
7.1.2 Burning Rate Characteristics 203
7.1.2.1 Effect of AP Particle Size 203
7.1.2.2 Effect of the Binder 205
7.1.2.3 Temperature Sensitivity 208
7.1.3 Catalyzed AP Composite Propellants 210
7.1.3.1 Positive Catalysts 211
7.1.3.2 LiF Negative Catalyst 213
7.1.3.3 SrCO3 Negative Catalyst 216
7.2 Nitramine Composite Propellants 219
 7.2.1 Burning Rate Characteristics 220
 7.2.1.1 Effect of Nitramine Particle Size 220
 7.2.1.2 Effect of Binder 220
 7.2.2 Combustion Wave Structure 221
 7.2.3 HMX–GAP Propellants 224
 7.2.3.1 Physicochemical Properties of Propellants 224
 7.2.3.2 Burning Rate and Combustion Wave Structure 224
 7.2.4 Catalyzed Nitramine Composite Propellants 227
 7.2.4.1 Super–Rate Burning of HMX Composite Propellants 227
 7.2.4.2 Super–Rate Burning of HMX–GAP Propellants 228
 7.2.4.3 LiF Catalysts for Super–Rate Burning 230
 7.2.4.4 Catalyst Action of LiF on Combustion Wave 232
 7.3 AP–Nitramine Composite Propellants 235
 7.3.1 Theoretical Performance 235
 7.3.2 Burning Rate 236
 7.3.2.1 Effects of AP/RDX Mixture Ratio and Particle Size 236
 7.3.2.2 Effect of Binder 238
 7.4 TAGN–GAP Composite Propellants 241
 7.4.1 Physicochemical Characteristics 241
 7.4.2 Burning Rate and Combustion Wave Structure 242
 7.5 AN–Azide Polymer Composite Propellants 243
 7.5.1 AN–GAP Composite Propellants 243
 7.5.2 AN–(BAMO–AMMO)–HMX Composite Propellants 246
 7.6 AP–GAP Composite Propellants 247
 7.7 ADN, HNF, and HNIW Composite Propellants 249

References 250

8 Combustion of CMDB Propellants 253
 8.1 Characteristics of CMDB Propellants 253
10.6.2 Nonmetallic Solid Fuels 316
10.6.2.1 Boron 316
10.6.2.2 Carbon 316
10.6.2.3 Silicon 317
10.6.2.4 Sulfur 317
10.6.3 Polymeric Fuels 317
10.6.3.1 Nitropolymers 317
10.6.3.2 Polymeric Azides 318
10.6.3.3 Hydrocarbon Polymers 318
10.7 Metal Azides 318

References 319

11 Combustion Propagation of Pyrolants 321
11.1 Physicochemical Structures of Combustion Waves 321
11.1.1 Thermal Decomposition and Heat Release Process 321
11.1.2 Homogeneous Pyrolants 322
11.1.3 Heterogeneous Pyrolants 322
11.1.4 Pyrolants as Igniters 323
11.2 Combustion of Metal Particles 324
11.2.1 Oxidation and Combustion Processes 325
11.2.1.1 Aluminum Particles 325
11.2.1.2 Magnesium Particles 325
11.2.1.3 Boron Particles 326
11.2.1.4 Zirconium Particles 326
11.3 Black Powder 326
11.3.1 Physicochemical Properties 326
11.3.2 Reaction Process and Burning Rate 327
11.4 Li SF6 Pyrolants 327
11.4.1 Reactivity of Lithium 327
11.4.2 Chemical Characteristics of SF6 328
11.5 Zr Pyrolants 328
11.5.1 Reactivity with BaCrO4 328
11.5.2 Reactivity with Fe2O3 329
11.6 Mg–Tf Pyrolants 329
11.6.1 Thermochemical Properties and Energetics 329
11.6.2 Reactivity of Mg and Tf 331
11.6.3 Burning Rate Characteristics 331
11.6.4 Combustion Wave Structure 334
11.7 B – KNO3 Pyrolants 336
11.7.1 Thermochemical Properties and Energetics 336
11.7.2 Burning Rate Characteristics 336
11.8 Ti – KNO3 and Zr – KNO3 Pyrolants 338
11.8.1 Oxidation Process 338
11.8.2 Burning Rate Characteristics 338
11.9 Metal–GAP Pyrolants 339
11.9.1 Flame Temperature and Combustion Products 339
11.9.2 Thermal Decomposition Process 340
11.9.3 Burning Rate Characteristics 340
11.10 Ti–C Pyrolants 341
11.10.1 Thermochemical Properties of Titanium and Carbon 341
11.10.2 Reactivity of Tf with Ti–C Pyrolants 341
11.10.3 Burning Rate Characteristics 342
11.11 NaN3 Pyrolants 342
11.11.1 Thermochemical Properties of NaN3 Pyrolants 342
11.11.2 NaN3 Pyrolant Formulations 343
11.11.3 Burning Rate Characteristics 344
11.11.4 Combustion Residue Analysis 344
11.12 GAP–AN Pyrolants 345
11.12.1 Thermochemical Characteristics 345
11.12.2 Burning Rate Characteristics 345
11.12.3 Combustion Wave Structure and Heat Transfer 345
11.13 Nitramine Pyrolants 346
11.13.1 Physicochemical Properties 346
11.13.2 Combustion Wave Structures 346
13.5.2 Effect of Aluminum Particles 425
13.6 Wired Propellant Burning 426
13.6.1 Heat-Transfer Process 426
13.6.2 Burning-Rate Augmentation 428
References 432
14 Rocket Thrust Modulation 435
14.1 Combustion Phenomena in a Rocket Motor 435
14.1.1 Thrust and Burning Time 435
14.1.2 Combustion Efficiency in a Rocket Motor 437
14.1.3 Stability Criteria for a Rocket Motor 440
14.1.4 Temperature Sensitivity of Pressure in a Rocket Motor 442
14.2 Dual-Thrust Motor 444
14.2.1 Principles of a Dual-Thrust Motor 444
14.2.2 Single-Grain Dual-Thrust Motor 445
14.2.3 Dual-Grain Dual-Thrust Motor 446
14.2.3.1 Mass Generation Rate and Mass Discharge Rate 446
14.2.3.2 Determination of Design Parameters 448
14.2.4 Thrust Modulator 451
14.3 Pulse Rocket Motor 451
14.3.1 Design Concept of Pulse Motor 451
14.3.2 Operational Flight Design of Pulse Motor 452
14.3.3 Combustion Test Results of a Two-Pulse Rocket Motor 454
14.4 Erosive Burning in a Rocket Motor 455
14.4.1 Head-End Pressure 455
14.4.2 Determination of Erosive-Burning Effect 456
14.5 Nozzleless Rocket Motor 459
14.5.1 Principles of the Nozzleless Rocket Motor 459
14.5.2 Flow Characteristics in a Nozzleless Rocket 460
14.5.3 Combustion Performance Analysis 462
14.6 Gas-Hybrid Rockets 463
14.6.1 Principles of the Gas-Hybrid Rocket 463
14.6.2 Thrust and Combustion Pressure 466
14.6.3 Pyrolants Used as Gas Generators 466
References 469

15 Ducted Rocket Propulsion 471

15.1 Fundamentals of Ducted Rocket Propulsion 471

15.1.1 Solid Rockets, Liquid Ramjets, and Ducted Rockets 471

15.1.2 Structure and Operational Process 472

15.2 Design Parameters of Ducted Rockets 473

15.2.1 Thrust and Drag 473

15.2.2 Determination of Design Parameters 474

15.2.3 Optimum Flight Envelope 475

15.2.4 Specific Impulse of Flight Mach Number 476

15.3 Performance Analysis of Ducted Rockets 477

15.3.1 Fuel–Flow System 477

15.3.1.1 Non-choked Fuel–Flow System 478

15.3.1.2 Fixed Fuel–Flow System 478

15.3.1.3 Variable Fuel–Flow System 478

15.4 Principle of the Variable Fuel–Flow Ducted Rocket 479

15.4.1 Optimization of Energy Conversion 479

15.4.2 Control of Fuel–Flow Rate 479

15.5 Energetics of Gas–Generating Pyrolants 482

15.5.1 Required Physicochemical Properties 482

15.5.2 Burning Rate Characteristics of Gas–Generating Pyrolants 483

15.5.2.1 Burning Rate and Pressure Exponent 483

15.5.2.2 Wired Gas–Generating Pyrolants 484

15.5.3 Pyrolants for Variable Fuel–Flow Ducted Rockets 485

15.5.4 GAP Pyrolants 486

15.5.5 Metal Particles as Fuel Components 487

15.5.6 GAP–B Pyrolants 488

15.5.7 AP Composite Pyrolants 490

15.5.8 Effect of Metal Particles on Combustion Stability 490

15.6 Combustion Tests for Ducted Rockets 491
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

Product Name: Propellants and Explosives. Thermochemical Aspects of Combustion. 3rd Edition
Web Address: http://www.researchandmarkets.com/reports/3024879/
Office Code: SCBRKT95

Product Format
Please select the product format and quantity you require:

- Hard Copy (Hard Back): USD 165 + USD 29 Shipping/Handling

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title: Mr [] Mrs [] Dr [] Miss [] Ms [] Prof []
First Name: ___________________________ Last Name: ___________________________
Email Address: * ___________________________
Job Title: __
Organisation: __
Address: ___
City: ___
Postal / Zip Code: __
Country: ___
Phone Number: ___
Fax Number: __

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:

Research and Markets, Guinness Center, Taylors Lane, Dublin 8, Ireland.

☐ Pay by wire transfer:

Please transfer funds to:

Account number: 833 130 83
Sort code: 98-53-30
Swift code: ULSBIE2D
IBAN number: IE78ULSB98533083313083
Bank Address: Ulster Bank, 27-35 Main Street, Blackrock, Co. Dublin, Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: ______________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:

(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World