Cardiovascular Drug Delivery - Technologies, Markets and Companies

Description: Drug delivery to the cardiovascular system is different from delivery to other systems because of the anatomy and physiology of the vascular system; it supplies blood and nutrients to all organs of the body. Drugs can be introduced into the vascular system for systemic effects or targeted to an organ via the regional blood supply. In addition to the usual formulations of drugs such as controlled release, devices are used as well. This report starts with an introduction to molecular cardiology and discusses its relationship to biotechnology and drug delivery systems.

Drug delivery to the cardiovascular system is approached at three levels: (1) routes of drug delivery; (2) formulations; and finally (3) applications to various diseases. Formulations for drug delivery to the cardiovascular system range from controlled release preparations to delivery of proteins and peptides. Cell and gene therapies, including antisense and RNA interference, are described in full chapters as they are the most innovative methods of delivery of therapeutics. Various methods of improving systemic administration of drugs for cardiovascular disorders are described including use of nanotechnology.

Cell-selective targeted drug delivery has emerged as one of the most significant areas of biomedical engineering research, to optimize the therapeutic efficacy of a drug by strictly localizing its pharmacological activity to a pathophysiologically relevant tissue system. These concepts have been applied to targeted drug delivery to the cardiovascular system. Devices for drug delivery to the cardiovascular system are also described.

Role of drug delivery in various cardiovascular disorders such as myocardial ischemia, hypertension and hypercholesterolemia is discussed. Cardioprotection is also discussed. Some of the preparations and technologies are also applicable to peripheral arterial diseases. Controlled release systems are based on chronopharmacology, which deals with the effects of circadian biological rhythms on drug actions. A full chapter is devoted to drug-eluting stents as treatment for restenosis following stenting of coronary arteries. Fifteen companies are involved in drug-eluting stents.

New cell-based therapeutic strategies are being developed in response to the shortcomings of available treatments for heart disease. Potential repair by cell grafting or mobilizing endogenous cells holds particular attraction in heart disease, where the meager capacity for cardiomyocyte proliferation likely contributes to the irreversibility of heart failure. Cell therapy approaches include attempts to reinitiate cardiomyocyte proliferation in the adult, conversion of fibroblasts to contractile myocytes, conversion of bone marrow stem cells into cardiomyocytes, and transplantation of myocytes or other cells into injured myocardium.

Advances in molecular pathophysiology of cardiovascular diseases have brought gene therapy within the realm of possibility as a novel approach to treatment of these diseases. It is hoped that gene therapy will be less expensive and affordable because the techniques involved are simpler than those involved in cardiac bypass surgery, heart transplantation and stent implantation. Gene therapy would be a more physiologic approach to deliver vasoprotective molecules to the site of vascular lesion. Gene therapy is not only a sophisticated method of drug delivery; it may at time need drug delivery devices such as catheters for transfer of genes to various parts of the cardiovascular system.

The cardiovascular drug delivery markets are estimated for the years 2016 to 2026 on the basis of epidemiology and total markets for cardiovascular therapeutics. The estimates take into consideration the anticipated advances and availability of various technologies, particularly drug delivery devices in the future. Markets for drug-eluting stents are calculated separately. Role of drug delivery in developing cardiovascular markets is defined and unmet needs in cardiovascular drug delivery technologies are identified.

Selected 82 companies that either develop technologies for drug delivery to the cardiovascular system or products using these technologies are profiled and 80 collaborations between companies are tabulated. The bibliography includes 200 selected references from recent literature on this topic. The report is supplemented with 30 tables and 8 figures.
1. Cardiovascular Diseases
 - Introduction
 - History of cardiovascular drug delivery
 - Overview of cardiovascular disease
 - Coronary artery disease
 - Angina pectoris
 - Myocardial infarction
 - Limitations of current therapies for myocardial ischemic disease
 - Cardiomyopathies
 - Cardiac arrhythmias
 - Congestive heart failure
 - Peripheral arterial disease
 - Current management
 - Atherosclerosis
 - The endothelium as a target for cardiovascular therapeutics
 - Molecular cardiology
 - Cardiogenomics
 - Cardioproteomics
 - Personalized cardiology
 - Pharmacogenomics of cardiovascular disorders
 - Modifying the genetic risk for myocardial infarction
 - Management of heart failure
 - Management of hypertension
 - Pharmacogenomics of diuretic drugs
 - Pharmacogenomics of ACE inhibitors
 - Management of hypertension by personalized approach
 - Pharmacogenetics of lipid-lowering therapies
 - Polymorphisms in genes involved in cholesterol metabolism
 - Role of eNOS gene polymorphisms
 - Important advances in cardiovascular therapeutics
 - Drug delivery, biotechnology and the cardiovascular system
 - Role of cardiovascular imaging in cardiovascular therapeutics
 - Biologic therapeutics for cardiovascular disorders
 - Chronopharmacotherapy of cardiovascular diseases

2. Methods for Drug Delivery to the Cardiovascular System
 - Introduction
 - Routes of drug delivery to the cardiovascular system
 - Local administration of drugs to the cardiovascular system
 - Intramyocardial drug delivery
 - Drug delivery via coronary venous system
 - Intrapericardial drug delivery
 - Formulations for drug delivery to the cardiovascular system
 - Sustained and controlled release
 - Programming the release at a defined time
 - Dosage formulation of calcium channel blockers
 - Sustained and controlled release verapamil
 - Methods of administration of proteins and peptides
 - Delivery of peptides by subcutaneous injection
 - Depot formulations and implants
 - Poly(ethylene glycol) technology
 - Liposomes for cardiovascular drug delivery
 - Microencapsulation for protein delivery
 - Localized delivery of biomaterials for tissue engineering
 - Oral delivery of proteins and peptides
 - Monoclonal antibodies for cardiovascular disorders
 - DDS to improve systemic delivery of cardiovascular drugs
 - Nanotechnology-based drug delivery
 - Controlled delivery of nanoparticles to injured vasculature
 - Nanoparticles for cardiovascular imaging and targeted drug delivery
 - Nanofiber-based scaffolds with drug-release properties
 - Targeted drug delivery to the cardiovascular system
Immunotargeting of liposomes to activated vascular endothelial cells
PEGylated biodegradable particles targeted to inflamed endothelium
Devices for cardiovascular drug delivery
Local drug delivery by catheters
Microneedle for periarterial injection
Nanotechnology-based devices for the cardiovascular system
Liposomal nanodevices for targeted cardiovascular drug delivery
Nanotechnology approach to the problem of “vulnerable plaque”
Drug delivery in the management of cardiovascular disease
Drug delivery in the management of hypertension
Transnasal drug delivery for hypertension
Transdermal drug delivery for hypertension
Oral extended and controlled release preparations for hypertension
Long-acting hypertensives for 24 h blood pressure control
Drug delivery to control early morning blood pressure peak
Role of drug delivery in improving compliance with antihypertensive therapy
Vaccines for hypertension
Drug delivery in the treatment of angina pectoris
Sustained and controlled-release nitrate for angina pectoris
Transdermal nitrate therapy
Controlled release calcium blockers for angina pectoris
Sustained-release formulation of ranolazine
DDS in the management of ischemic heart disease
Intravenous emulsified formulations of halogenated anesthetics
Injectable peptide nanofibers for myocardial ischemia
Delivery of angiogenesis-inducing agents for myocardial ischemia
Drug delivery for myocardial infarction
Drug delivery for cardioprotection
Cardioprotection during reperfusion
Drug delivery for congestive heart failure
Oral human brain-type natriuretic peptide
Nitric oxide-based therapies for congestive heart failure
Automated drug delivery system for cardiac failure
Drug delivery for cardiac rhythm disorders
Drug delivery in the management of pulmonary hypertension
Prostacyclin by inhalation
Endothelin receptor antagonist treatment of PAH
Anticoagulation in cardiovascular disease
Oral heparin
Low molecular weight heparin-loaded polymeric nanoparticles
Transdermal anticoagulants
Thrombolysis for cardiovascular disorders
Use of ultrasound to facilitate thrombolysis
Delivery of alteplase through the AngioJet rheolytic catheter
Drug delivery for peripheral arterial disease
Delivery of thrombolytic agent to the clot through a catheter
Delivery of growth factors to promote angiogenesis in ischemic limbs
Immune modulation therapy for PAD
NO-based therapies for peripheral arterial disease
Drug delivery in the management of hypercholesterolemia
Controlled/sustained release formulations of statins
Combinations of statins with other drugs to increase efficacy
Controlled release fenofibrate
Extended release nicotinic acid
Intravenous infusion of lipoprotein preparations to raise HDL
Innovative approaches to hypercholesterolemia
PCSK9 inhibitors for lowering high LDL cholesterol
Vaccines for lowering cholesterol by targeting PCSK9
Single dose therapy for more than one cardiovascular disorder

3. Cell Therapy for Cardiovascular Disorders
Introduction
Inducing the proliferation of cardiomyocytes
Role of stem cells in repair of the heart
Cell-mediated immune modulation for chronic heart disease
Cell therapy for atherosclerotic coronary artery disease
Transplantation of myoblasts for myocardial infarction
MyoCell™ (Bioheart)
Transplantation of cardiac progenitor cells for revascularization of myocardium
Methods of delivery of cells to the heart
Cellular cardiomyoplasty
IGF-1 delivery by nanofibers to improve cell therapy for MI
Intracoronary infusion of bone marrow-derived cells for AMI
Non-invasive delivery of cells to the heart by Morph®guide catheter
Transplantation of stem cells for myocardial infarction
Transplantation of embryonic stem cells
Transplantation of hematopoietic stem cells
Transplantation of cord blood stem cells for myocardial infarction
Intracoronary infusion of mobilized peripheral blood stem cells
Human mesenchymal stem cells for cardiac regeneration
Cytokine preconditioning of human fetal liver CD133+ SCs
Transplantation of expanded adult SCs derived from the heart
Transplantation of endothelial cells
Transplantation of genetically modified cells
Transplantation of cells secreting vascular endothelial growth factor
Transplantation of genetically modified bone marrow stem cells
Cell transplantation for congestive heart failure
Injection of adult stem cells for congestive heart failure
Intracoronary infusion of cardiac stem cells
Myoblasts for treatment of congestive heart failure
Role of cell therapy in cardiac arrhythmias
Atrioventricular conduction block
Ventricular tachycardia
ESCs for correction of congenital heart defects
Cardiac progenitors cells for treatment of heart disease in children
Stem cell therapy for peripheral arterial disease
Targeted delivery of endothelial progenitor cells labeled with nanoparticles
Clinical trials of cell therapy in cardiovascular disease
A critical evaluation of cell therapy for heart disease
Publications of clinical trials of cell therapy for CVD
Future directions for cell therapy of CVD
Prospects of adult stem cell therapy for repair of heart
Regeneration of cardiomyocytes without use of cardiac stem cells
Repair of the damaged heart

4. Gene Therapy for Cardiovascular Disorders
Introduction
Techniques of gene transfer to the cardiovascular system
Direct plasmid injection into the myocardium
Catheter-based systems for vector delivery
Ultrasound microbubbles for cardiovascular gene delivery
Vectors for cardiovascular gene therapy
AAV vectors for therapeutic delivery to the heart
Adenoviral vectors for cardiovascular diseases
Plasmid DNA-based delivery in cardiovascular disorders
Hypoxia-regulated gene therapy for myocardial ischemia
Angiogenesis and gene therapy of ischemic disorders
Therapeutic angiogenesis vs. vascular growth factor therapy
Gene painting for delivery of targeted gene therapy to the heart
Gene delivery to vascular endothelium
Overexpression of eNOS to improve vasodilation with Ad vectors
Targeted plasmid DNA delivery to the cardiovascular system with nanoparticles
Gene therapy for genetic cardiovascular disorders
Genetic disorders predisposing to atherosclerosis
Familial hypercholesterolemia
Apolipoprotein E deficiency
Hypertension
Genetic factors for myocardial infarction
Acquired cardiovascular diseases
Coronary artery disease with angina pectoris
Ad5FGF-4
Ischemic heart disease with myocardial infarction
Angiogenesis for cardiovascular disease
Myocardial repair with IGF-1 therapy
miRNA gene therapy for ischemic heart disease
Congestive heart failure
Rationale of gene therapy in CHF
AAV-mediated gene transfer for CHF
AngioCell gene therapy for CHF
β-ARKct gene therapy
Elevating cardiac dATP by gene therapy to improve cardiac function
Intracoronary adenovirus-mediated gene therapy for CHF
nNOS gene transfer in CHF
Gene therapy for cardiac arrhythmias
Gene transfer for biological pacemakers
Management of arrhythmias due to myoblast transplantation
Genetically engineered cells as biological pacemakers
Cholesterol reduction by genetic engineering of PCSK9 gene
Gene therapy and heart transplantation
Gene therapy for peripheral arterial disease
Angiogenesis by gene therapy
HIF-1α gene therapy for peripheral arterial disease
HGF gene therapy for peripheral arterial disease
Ischemic neuropathy secondary to peripheral arterial disease
Maintaining vascular patency after surgery
Antisense therapy for cardiovascular disorders
Antisense therapy for hypertension
Antisense therapy for hypercholesterolemia
RNAi for cardiovascular disorders
RNAi for hypercholesterolemia
siRNAs targeting PCSK9
microRNA and the cardiovascular system
Role of miRNAs in angiogenesis
Role of miRNAs in cardiac hypertrophy and failure
Role of miRNAs in conduction and rhythm disorders of the heart
miRNA-based approach for reduction of hypercholesterolemia
miRNAs as therapeutic targets for cardiovascular diseases
Future prospects of miRNA in the cardiovascular therapeutics
Future prospects of gene therapy of cardiovascular disorders
Companies involved in gene therapy of cardiovascular disorders

5. Drug-Eluting Stents
Introduction
Percutaneous transluminal coronary angioplasty
Stents
Restenosis
Pathomechanism
Treatment
Nitric oxide-based therapies for restenosis
Carbon monoxide inhalation for preventing restenosis
Antisense approaches for prevention of restenosis after angioplasty
Gene therapy to prevent restenosis after angioplasty
Delivery of gene therapy for restenosis
HSV-1 gene therapy to prevent intimal hyperplasia
miRNA-based gene therapy for restenosis following angioplasty
Nonviral gene therapy to prevent intimal hyperplasia
NOS gene therapy for restenosis
Targets for gene therapy of restenosis
Viral vector-mediated gene therapy for restenosis
Drug delivery devices for restenosis
Local drug delivery by catheter
Stenosis associated with stents
Absorbable metal stents
Drug-eluting stents
Various types of DES
CYPHÉR® sirolimus-eluting coronary stent
Dexamethasone-eluting stents
NO-generating stents
Paclitaxel-eluting stents
Sirolimus-eluting vs paclitaxel-eluting stents
Novel technologies for DES
Bio-absorbable DES
Drug-eluting stents coated with polymer surfaces
Endeavour DES
Polymer-free drug-coated stent for patients at high risk of bleeding
Stents for delivery of gene therapy
Stem cell-based stents
VAN 10-4 DES
Nanotechnology-based stents
Drugs encapsulated in biodegradable nanoparticles
Magnetic nanoparticle-coated DES
Magnetic nanoparticles encapsulating paclitaxel targeted to stents
Nanocoated DES
Nanopores to enhance compatibility of DES
Paclitaxel-encapsulated targeted lipid-polymeric nanoparticles
The ideal DES
Companies developing drug-eluting stents
Clinical trials of drug-eluting stents
Measurements used in clinical trials of DES
TAXUS paclitaxel-eluting stents
XIENCE™ V everolimus-eluting coronary stent
COSTAR II clinical trial
Endeavor RESOLUTE zotarolimus-eluting stent system
CUSTOM I clinical trial
NOBORI CORE Trial
LEADERS trial
Comparison of DES releasing either zotarolimus or everolimus
Comparison of DES versus bare metal stents in clinical trials
Multi-Link Vision bare metal stent vs DES
Guidelines for DES vs BMS
DES vs BMS for off-label indications
Role of DES in cases of bare-metal in-stent restenosis
Comparison of revascularization methods for stable coronary disease
DES versus coronary artery bypass graft
DES versus balloon catheter coated with paclitaxel
DES versus intracoronary radiation therapy for recurrent stenosis
PCI plus DES as the preferred method for treatment of MI
Cost-effectiveness of DES
Safety issues of DES
Adverse reactions to DES
Long-term safety studies of DES
Endothelial vascular dysfunction due to sirolimus
Risk of clotting with DES
Effect of blood clot on release of drug from DES
Measures to prevent clotting associated with DES
Cangrelor use and long-term outcomes of patients receiving DES
Prasugrel as antiplatelet agent
Use of magnetized cell lining to prevent clotting of DES
Regulatory issues of DES
Approved drug-eluting stents
Safety issues of drug-eluting stents
Assessment of efficacy of various drug-eluting stents
Future prospects of treatment of restenosis by DES
Effect of stent cost on clinical applications
Future role of DES in the management of cardiovascular diseases
Improvements in stent technology
Bioabsorbable stent
DES vs drug-eluting balloons

6. Markets for Cardiovascular Drug Delivery
Introduction
Epidemiology of cardiovascular disease
Cost of care of cardiovascular disorders
Cardiovascular markets according to important diseases
Antithrombotics
Anticholesterol agents
Antihypertensive agents
Drugs for congestive heart failure
Markets for innovative technologies for cardiovascular disorders
Markets for cell therapy of cardiovascular disorders
Markets for gene therapy of cardiovascular disorders
Markets for drug-eluting stents
Major players in DES market
Impact of safety issues on future markets for DES
DES market in Asia
Patenting and legal issues of DES
The financial impact of DES on cardiovascular markets
Unmet needs for cardiovascular drug delivery
Role of DDS in developing cardiovascular markets
Markets for cardiovascular devices
Marketing of innovative cardiovascular drug delivery devices
Direct to consumer advertising of DES
Future trends in the integration of drug delivery with therapeutics
Future of cardiovascular drug delivery

7. Companies involved in Cardiovascular Drug Delivery
Profiles of companies
Collaborations

8. References

List of Tables
Table 1-1: Landmarks in the historical evolution of cardiovascular drug delivery
Table 1-2: Approaches to management of myocardial infarction and its sequelae
Table 1-3: Gene polymorphisms that alter cardiovascular response to drugs
Table 2-1: Routes of drug delivery used for treatment of cardiovascular disorders
Table 2-2: Formulations for drug delivery to the cardiovascular system
Table 2-3: Improved methods of systemic drug delivery of cardiovascular drugs
Table 2-4: Targeted delivery of therapeutic substances to the cardiovascular system
Table 2-5: Classification of devices for drug delivery to the cardiovascular system
Table 2-6: Various methods of delivery of therapeutic agents for hypertension
Table 2-7: Marketed controlled/ extended release preparation for hypertension
Table 2-8: Methods of delivery of nitrate therapy in angina pectoris
Table 2-9: Drug delivery in ischemic heart disease
Table 2-10: Strategies for cardioprotection
Table 2-11: Drug delivery for peripheral arterial disorders
Table 3-1: Clinical trials of cell therapy in cardiovascular disease
Table 4-1: Cardiovascular disorders for which gene therapy is being considered.
Table 4-2: Catheter-based systems for vector delivery to the cardiovascular system
Table 4-3: Potential applications of antisense in cardiovascular disorders
Table 4-4: Companies involved in gene therapy of cardiovascular diseases
Table 5-1: Treatment of restenosis
Table 5-2: Devices used for drug delivery in restenosis
Table 5-3: Companies involved in drug-eluting stents
Table 5-4: Drug-eluting stents approved by the FDA
Table 6-1: Prevalence of cardiovascular disorders in major markets: US 2016-2026
Table 6-2: Prevalence of cardiovascular disorders in major markets: Europe 2016-2026
Table 6-3: Prevalence of cardiovascular disorders in major markets: Japan 2016-2026
Table 6-4: Values of cardiovascular DDS in major markets 2016-2026
Table 6-5: Markets for innovative technologies for cardiovascular disorders 2016-2026
Table 7-1: Top 5 companies in cardiovascular drug delivery
Table 7-2: Collaborations in cardiovascular drug delivery

List of Figures
Figure 1-1: Drug delivery, biotechnology and cardiovascular diseases
Figure 2-1: MicroSyringe for periarterial injection
Figure 2-2: Patch for delivery of follistatin-like 1 factor for myocardial infarction
Figure 5-1: Vicious circle of vascular occlusion following angioplasty and stenting
Figure 5-2: Measurement of in-stent stenosis
Figure 5-3: Medtronic’s Endeavour drug-eluting stent
Figure 5-4: Magnetic nanoparticle-coated stent
Figure 6-1: Unmet needs for cardiovascular drug delivery

Ordering:
Order Online - http://www.researchandmarkets.com/reports/302609/
Order by Fax - using the form below
Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct and select the format(s) you require.

- Product Name: Cardiovascular Drug Delivery - Technologies, Markets and Companies
- Web Address: http://www.researchandmarkets.com/reports/302609/
- Office Code: SC2GZUK6

Product Formats
Please select the product formats and quantity you require:

<table>
<thead>
<tr>
<th>Format</th>
<th>Quantity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronic - Single User</td>
<td>![]</td>
<td>USD 2800</td>
</tr>
<tr>
<td>Hard Copy</td>
<td>![]</td>
<td>USD 3200 + USD 56 Shipping/Handling</td>
</tr>
<tr>
<td>Electronic - Enterprisewide</td>
<td>![]</td>
<td>USD 8400</td>
</tr>
<tr>
<td>Electronic and Hard Copy (PDF)</td>
<td>![]</td>
<td>USD 3700 + USD 56 Shipping/Handling</td>
</tr>
</tbody>
</table>

* Shipping/Handling is only charged once per order.
* The price quoted above is only valid for 30 days. Please submit your order within that time frame to avail of this price as all prices are subject to change.

Contact Information
Please enter all the information below in BLOCK CAPITALS

<table>
<thead>
<tr>
<th>Field</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>![] Mr ![] Mrs ![] Dr ![] Miss ![] Ms ![] Prof</td>
</tr>
<tr>
<td>First Name</td>
<td></td>
</tr>
<tr>
<td>Last Name</td>
<td></td>
</tr>
<tr>
<td>Email Address: *</td>
<td></td>
</tr>
<tr>
<td>Job Title</td>
<td></td>
</tr>
<tr>
<td>Organisation</td>
<td></td>
</tr>
<tr>
<td>Address</td>
<td></td>
</tr>
<tr>
<td>City</td>
<td></td>
</tr>
<tr>
<td>Postal / Zip Code</td>
<td></td>
</tr>
<tr>
<td>Country</td>
<td></td>
</tr>
<tr>
<td>Phone Number</td>
<td></td>
</tr>
<tr>
<td>Fax Number</td>
<td></td>
</tr>
</tbody>
</table>

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:

Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:

<table>
<thead>
<tr>
<th>Account number</th>
<th>833 130 83</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sort code</td>
<td>98-53-30</td>
</tr>
<tr>
<td>Swift code</td>
<td>ULSBIE2D</td>
</tr>
<tr>
<td>IBAN number</td>
<td>IE78ULSB98533083313083</td>
</tr>
<tr>
<td>Bank Address</td>
<td>Ulster Bank, 27-35 Main Street, Blackrock, Co. Dublin, Ireland.</td>
</tr>
</tbody>
</table>

If you have a Marketing Code please enter it below:

Marketing Code: __________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp