Inorganic and Composite Printed Electronics 2014-2024

  • ID: 3031018
  • November 2014
  • Region: Global
  • 296 pages
  • IDTechEx
1 of 4
The Market For Inorganic Electronics Will Rise To $45 Billion By 2024


  • Boeing Spectrolab
  • DaiNippon Printing
  • G24i
  • InkTec
  • Kovio Inc
  • NanoForge
  • MORE

There is increasing work on printed inorganics as people struggle with the performance of organics in some aspects. For conductors with vastly better conductance and cost, for the best printed batteries, for quantum dot devices and for transistor semiconductors with ten times the mobility, look to the new inorganics. That is the emerging world of new nanoparticle metal and alloy inks that are magnitudes superior in cost, conductivity and stability, such as the flexible zinc oxide based transistor semiconductors working at ten times the frequency and with best stability and life, along with many other inorganic materials. Read the world's only report that pulls all this together in readable form.

This report critically compares the options, the trends and the emerging applications. It is the first in the world to comprehensively cover this exciting growth area. The emphasis is on technology basics, commercialisation and the key players.

This report is suitable for all companies developing or interested in the opportunity of printed or thin film electronics materials, manufacturing technologies or complete device fabrication and integration.

Note: Product cover images may vary from those shown
2 of 4


  • Boeing Spectrolab
  • DaiNippon Printing
  • G24i
  • InkTec
  • Kovio Inc
  • NanoForge
  • MORE

1.1. Printed electronics
1.2. Mainly inorganic
1.3. The opportunity for chemical companies
1.4. Inorganic vs organic
1.5. Photovoltaics
1.6. Progress with Semiconductors
1.6.1. Oxide Semiconductors
1.6.2. Carbon Nanotubes
1.6.3. Organics
1.6.4. Others
1.7. Printed electronics needs new design rules
1.7.1. Metamaterials, nantennas and memristors
1.8. Inorganic compounds for future 2D crystal devices

2.1. Printed electronics - reasons why
2.2. Impact of printed electronics on conventional electronics
2.3. Progress so far
2.3.1. The age of silicon
2.3.2. The dream of organic electronics
2.3.3. The example of smart clothing
2.3.4. Slow progress with organic conductors
2.3.5. Boron nitride - tailoring carbon composites
2.3.6. Molybdenum disulfide
2.4. The new inorganic printed and thin film devices
2.4.1. Rapidly widening choice of elements - déjà vu
2.4.2. Metamaterial solar cells and sensors
2.4.3. Example - printed lighting
2.4.4. Example - printed photodetectors
2.4.5. Inorganic barrier layers - alumina, silicon nitride, boron nitride etc

3.1. Inorganic compound semiconductors for transistors
3.1.1. Learning how to print inorganic compound transistors
3.1.2. Zinc oxide based transistor semiconductors and Samsung breakthrough
3.1.3. Aluminium oxide n type transistor semiconductor
3.1.4. Amorphous InGaZnO
3.1.5. Gallium-indium hydroxide nanoclusters
3.1.6. Gallium arsenide semiconductors for transistors
3.1.7. Transfer printing silicon and gallium arsenide on film
3.1.8. Silicon nanoparticle ink
3.1.9. Molybdenite transistors at EPFL Lausanne
3.1.10. Carbon nanotube TFTs at SWeNT
3.2. Inorganic dielectrics for transistors
3.2.1. Solution processed barium titanate nanocomposite
3.2.2. Alternative inorganic dielectrics HafSOx etc
3.2.3. Hybrid inorganic dielectrics - zirconia
3.2.4. Hafnium oxide - latest work
3.2.5. Aluminium, lanthanum and other oxides
3.3. Hewlett Packard prints aSi backplanes reel to reel
3.4. Inorganic transistors on paper
3.5. Progress Towards p-type Metal Oxide Semiconductors
3.6. High-Mobility Ambipolar Organic-Inorganic Hybrid Transistors
3.7. Hybrid inorganic/organic transistors and memory
3.7.1. Resistive switching
3.7.2. Oxides as anodes
3.8. Do organic transistors have a future?
3.9. Latest progress
3.9.1. Oxide Semiconductors
3.9.2. Carbon Nanotubes
3.9.3. Organics
3.9.4. Nickel oxide transistors and sensors
3.9.5. Inorganic transistors for ubiquitous RFID
3.9.6. Others

4.1. Performance criteria and limitations of silicon photovoltaics
4.2. Comparison of photovoltaic technologies
4.3. Non-silicon inorganic options
4.3.1. Lowest cost solar cells - CuSnZnSSe?
4.3.2. Copper Indium Gallium diSelenide (CIGS)
4.3.3. Gallium arsenide
4.3.4. Gallium arsenide - germanium
4.3.5. Gallium indium phosphide and gallium indium arsenide
4.3.6. Cadmium telluride and cadmium selenide
4.3.7. Bismuth ferrite - new principle of operation
4.3.8. Porous zinc oxide
4.3.9. Polymer-quantum dot devices CdSe, CdSe/ZnS, PbS, PbSe
4.3.10. Cuprous oxide PV
4.3.11. Other inorganic semiconductors for PV
4.4. Inorganic-organic and carbon-organic formulations
4.4.1. Titanium dioxide Dye Sensitised Solar Cells (DSSC)
4.4.2. Zinc oxide DSCC photovoltaics
4.4.3. Development of high-performance organic-dye sensitized solar cells
4.4.4. Fullerene enhanced polymers
4.5. Other recent advances
4.6. Cobalt, phosphate and ITO to store the energy
4.7. Major US funding for thin Si, CIGS/ZnMnO, DSSC photovoltaics
4.8. Nanoplasmonic silicon film photovoltaics

5.1. Printing large rechargeable batteries and supercapacitors
5.2. Applications of laminar batteries
5.3. Technology and developers
5.3.1. All-inorganic printed lithium electric vehicle battery: Planar Energy
5.3.2. Battery overview
5.3.3. Blue Spark Technologies, USA
5.3.4. CEA Liten
5.3.5. Enfucell
5.3.6. Imprint
5.3.7. Infinite Power Solutions, USA
5.3.8. Printed battery research
5.3.9. Rocket Electric, Bexel, Samsung, LG Chemicals and micro SKC batteries for Ubiquitous Sensor Networks
5.3.10. SCI, USA
5.3.11. Showa Denko KK Japan
5.3.12. Solicore, USA
5.3.13. The Paper Battery Co
5.3.14. Zirconium disulphide
5.4. Smart skin patches
5.5. Nano metal oxides with carbon create new supercapacitor

6.1. Silver, indium tin oxide and general comparisons.
6.2. Conductor deposition technologies
6.3. Breakthroughs in printing copper
6.3.1. Challenges with copper
6.3.2. University of Helsinki
6.3.3. NanoDynamics
6.3.4. Applied Nanotech Holdings
6.3.5. Samsung Electro-Mechanics
6.3.6. Intrinsiq announces nano copper for printing
6.3.7. NovaCentrix
6.3.8. Hitachi Chemical
6.4. Conductive Inks
6.5. Progress with new conductive ink chemistries and cure processes
6.5.1. Novacentrix PulseForge
6.6. Pre-Deposit Images in Metal PDIM
6.7. Transparent conductors/electrodes by metal patterning and transparent materials
6.7.1. Metal patterning
6.7.2. Nanocarbon hybrid transparent electrodes
6.8. Transparent conductors by growth of metal
6.9. Particle-free silver inks
6.9.1. University of Illinois
6.10. Printed conductors for RFID tag antennas
6.10.1. Print resolutions required for high performance RFID tag antennas
6.10.2. Process cost comparison
6.10.3. RFID tag manufacture consolidation and leaders
6.11. Printing wide area sensors and their memory: Polyscene, Polyapply, 3Plast, PriMeBits, Motorola
6.12. Phase Change Memory, Cu and Ti oxides etc
6.13. Printing metamaterials
6.14. Quantum Tunneling Composites (QTC)
6.15. Flexible memristors
6.16. Company profiles
6.16.1. ASK
6.16.2. Poly-Flex
6.16.3. Avery Dennison
6.16.4. Sun Chemical (Coates Circuit Products)
6.16.5. Mark Andy
6.16.6. InTune (formerly UPM Raflatac)
6.16.7. Stork Prints
6.17. Aerosol jet printing by Optomec
6.18. Electroless plating and electroplating technologies
6.18.1. Conductive Inkjet Technology
6.18.2. Meco
6.18.3. Additive Process Technologies Ltd
6.18.4. Ertek
6.18.5. Leonhard Kurz
6.18.6. Hanita Coatings
6.19. Polymer - metal suspensions
6.20. Comparison of options
6.21. Dry Phase Patterning (DPP)
6.22. Inorganic biomedical sensors
6.22.1. Disposable blocked artery sensors
6.22.2. Disposable asthma analysis

7.1. Nanotubes
7.2. At Stanford, nanotubes + ink + paper = instant battery
7.3. Carbon Nanotubes and printed electronics
7.4. Developers of Carbon Nanotubes for Printed Electronics
7.5. Nanorods in photovoltaics
7.6. Zinc oxide nanorod semiconductors
7.7. Zinc oxide nano-lasers
7.8. Indium oxide nanowires
7.9. Zinc oxide nanorod piezo power
7.10. Zinx oxide piezotronic transistors

8.1. AC Electroluminescent
8.1.1. Fully flexible electroluminescent displays
8.1.2. Watch displays
8.1.3. MorphTouch™ from MFLEX
8.1.4. Electroluminescent and other printed displays
8.2. Thermochromic
8.2.1. Heat generation and sensitivity
8.2.2. Duracell battery testers
8.3. Electrophoretic
8.3.1. Background
8.3.2. Applications of E-paper displays
8.3.3. Electrochromic E-Paper using ZnO Nanowire Array
8.3.4. The Killer Application
8.4. Colour electrophoretics
8.5. Inorganic LED lighting and hybrid OLED
8.5.1. Nth Degree Technologies - printing LED lighting
8.5.2. Tungsten oxide OLED Hole Transport layer
8.6. Affordable electronic window shutters
8.7. Quantum dot lighting and displays

9.1. Boeing Spectrolab
9.2. Cambrios
9.3. DaiNippon Printing
9.4. Evonik
9.5. G24i
9.6. Hewlett Packard
9.7. InkTec
9.8. ITRI Taiwan
9.9. Kovio Inc
9.10. Miasolé
9.11. NanoForge
9.12. Nanogram Teijin
9.13. NanoMas Technologies
9.14. Peratech
9.15. Samsung
9.16. Soligie
9.17. Toppan Forms

10.1. Market forecasts 2014-2024
10.2. Materials
10.3. Devices
10.3.1. Photovoltaics
10.3.2. Other products

Note: Product cover images may vary from those shown
3 of 4

- Boeing Spectrolab
- Cambrios
- DaiNippon Printing
- Evonik
- G24i
- Hewlett Packard
- ITRI Taiwan
- InkTec
- Kovio Inc
- Miasolé
- NanoForge
- NanoMas Technologies
- Nanogram Teijin
- Peratech
- Samsung
- Soligie
- Toppan Forms

Note: Product cover images may vary from those shown
4 of 4
Note: Product cover images may vary from those shown


  • Quick Help: The report will be emailed to you. The report is sent in PDF format. This is a 1-5 user licence, allowing up to five users have access to the product.

  • Quick Help: A copy of the report will be emailed to you and a printed copy will be shipped to you. The Electronic copy is sent in PDF format. This is a 1-5 user licence, allowing up to five users have access to the product.


If you have a more general question about our products please try our



Our Clients

  • Hexcel Corporation
  • Dow Chemical Co Ltd.
  • Akzo Nobel N.V.
  • Air Liquide S.A.
  • Solvay S.A.