
Description:

Drones markets promise to grow significantly because of the more economical visualization and navigation provided by systems. Visualization includes mapping from the air, inspection from the air, surveillance from the air, and package delivery from the air. The unmanned aircraft equipped with cameras are able to do things that cannot be done in any other way. This bodes well for market development.

Unmanned aircraft systems promise to achieve a more significant aspect of commercial market presence. Army Unmanned Aircraft Systems flying of 3 million flight hours gives drones market credibility. Eighty eight percent of those hours were logged in combat situations in Iraq and Afghanistan, paving the way for commercial drone markets to develop.

Quantities of fielded systems increase as application usefulness increases. Police departments, the oil and gas industry, border patrol, and utilities are all using commercial drones. Units are used for agriculture. Vendors continue to improve the capabilities of these drone aircraft as more air miles are logged. Their ability to support the commercial endeavors is increasing. Unmanned aircraft have fundamentally changed the accuracy of utility and oil and gas inspections. They are set to fundamentally change how agriculture is conducted.

Japan and Australia have been using drones in agriculture since the 1980s. Worldwide markets are evolving for several compelling applications. High value crops are a target of agricultural robotic development. What could be tastier than a strawberry, perfectly formed, and perfectly ripened? New agricultural robots are able to improve the delivery of consistent quality food, and to implement efficiency in managing food production.

Strawberries are a high profit crop. A new generation of drones has just been born. Strawberry spraying with the world’s most advanced technology is able to give maximum performance to a farm. Harvesting robots can use pictures from drones to optimize the productivity of the farming business by determining fruit ripeness from the air. Growers can get the best results in a berry farm using automated process. Automated picking collection systems improve labor productivity, give speed and agility to harvest operations.

The robotic platforms are capable of site-specific spraying. The capability is targeted spraying only on foliage and selected targets. It can be used for selective harvesting of fruit. The robots detect the fruit, sense its ripeness, then move to grasp and softly detach only ripe fruit.

Drone commercial uses will provide billions of dollars in economic growth. Centers of excellence are evolving worldwide. For the most part, open-use policies are in effect worldwide. Except in the US, Drones are currently mostly banned in the US. The US is more restrictive, it could take months, even years before the FAA offers preliminary guidelines on the commercial use of unmanned aircraft systems.

Commercial drones are set to build highways in the sky. The market will only evolve past the early adopter stage after the industry finds ways to build navigation infrastructure that is safe and that works. Roads in the sky will create altitude differences that function as bridges to separate the drones from each other when they are flying at angles to each other.

This type of navigation needs to be defined by industry standards groups, much as the software industry has been able to develop industry stands that provide the base for a market, so also, the commercial drone manufacturers need to come together with representatives from each company and from all the governments to decide on the highways in the sky.

Another aspect of commercial drone markets is the safety issue. If drones become so prevalent that they fall out of the sky on people or homes, this becomes a problem for the people hit or the people who own the homes that are destroyed. As the air crashes from so long ago in the 1920's to yesterday illustrate, people are deterred from commercial drone use by air crashes. Crashes can virtually destroy what is promising to be a burgeoning industry of commercial drones.
The drone industry is going to need to find a way to prevent injuries on the ground before anyone will support the burgeoning industry in any significant way.

In unpopulated areas like to Alaskan oil fields oil pipelines, and utility high wires, there is plenty of space for the drones to make a market. In vast agricultural land areas, drones promise to be able to be used without any danger to humans. The drones create new uses for automated process. The drones are less expensive than manned vehicles and more useful. They are useful in agricultural applications where the cameras are able to do spotting in a manner that is more efficient than the humans can do.

Unmanned aircraft systems are achieving a level of relatively early maturity. Fleets of unmanned aircraft systems have begun to evolve. The U.S. Army has achieved one million flight hours for its unmanned aircraft systems fleet. Unmanned aerial systems have good handling characteristics. UAS units are designed to perform high-speed, longendurance, more covert, multi-mission intelligence, surveillance, and reconnaissance (ISR) and precision-strike missions over land or sea.

Drone units feature a variety of internal loads, including 2,000 lb payload, an Electro-optical/Infrared (EO/IR) sensor, and an all-weather GA-ASI Lynx® synthetic aperture radar/ground moving target indicator (SAR/GMTI), maximizing long loiter capabilities.

UAS offers the business persistent situational awareness and mission affordability. For the cost of one manned fighter aircraft, multiple-swarm configured units can cover an area of interest, providing 24/7 ISR coverage, target identification, neutralization, mission flexibility, and attrition tolerance. Some drone UAS have the capability to support manned aircraft missions if desired.

Drones markets promise to grow significantly because of the better visualization provided by systems. Visualization includes mapping from the air, inspection from the air, surveillance from the air, and package delivery from the air. The unmanned aircraft equipped with cameras are able to do things that cannot be done in any other way. This bodes well for market development.

Unmanned aircraft systems promise to achieve a more significant aspect of commercial market presence. Army Unmanned Aircraft Systems flying of 3 million flight hours gives drones market credibility. Eighty eight percent of those hours were logged in combat situations in Iraq and Afghanistan.

According to Susan Eustis, leader of the team that prepared the study, “Quantities of fielded systems increase. Police departments, the oil and gas industry, border patrol, and utilities are all using commercial drones. Units are used for agriculture. Vendors continue to improve the capabilities of these drone aircraft. Their ability to support the commercial endeavors is increasing. Unmanned aircraft have fundamentally changed the accuracy of utility and oil and gas inspections. They are set to fundamentally change how agriculture is conducted.”

Unmanned aerial systems (UAS) markets at $609 million in 2014 are forecast to reach $4.8 billion dollars, worldwide by 2021. This is a sizable market growth with oil and gas mapping, utility line inspection, package delivery, and agricultural applications accounting for virtually all the unit sales. Drones can provide more information at less cost than a human inspection team can.
1.2 Pre-Position UASs In Key Strategic Locations
1.2.1 Maritime Air Take-Off and Landing:
1.2.2 Unmanned Aerial Systems (UAS) Aerial Refueling
1.2.3 Unmanned Aerial Systems (UAS) Enhanced Capability and Payloads
1.2.4 Unmanned Aerial Systems (UAS) Enhanced Resilience
1.2.5 Small and Micro-UASs
1.2.6 Unmanned Aerial Systems (UAS) Perimeter Surveillance
1.2.7 Unmanned Aerial Systems (UASs) Surveillance
1.3 Georeferenced Imagery
1.3.1 Unmanned Aerial Systems (UAS) Traffic Monitoring
1.3.2 Unmanned Aerial Systems (UAS) Agriculture Mapping
1.3.3 Unmanned Aerial Systems (UAS) Homeland Security
1.3.4 Unmanned Aerial Systems (UAS) for Scientific Research
1.4 Globalization and Technology
1.4.1 Proliferation of Conventional Military Technologies
1.4.2 UASs General Roles
1.5 Border Patrol:
1.6 Development Of Lighter Yet More Powerful Power Sources For UASs

2. COMMERCIAL DRONES, UNMANNED AERIAL SYSTEMS (UAS) MARKET SHARES AND FORECASTS
2.1 Commercial Drone Unmanned Aerial Systems (UAS)
2.1.1 UAS Challenges
2.1.2 Commercial Drone Unmanned Aerial Systems (UAS)
2.1.3 Commercial Drone Infrastructure Standards
2.2 Commercial Drone Unmanned Aerial Systems (UAS) Market Shares
2.2.1 Commercial Drone Unmanned Aerial Systems (UAS) Market Shares
2.2.2 BP and AeroVironment Launch FAA-Approved, Commercial Unmanned Aircraft Operations
2.2.3 AeroVironment's Extensive Operational Track Record
2.2.4 AeroVironment $11.2 Million Order for Raven Unmanned Aircraft Systems and Services
2.2.5 Textron /AAI
2.2.6 Textron Shadow®
2.2.7 Aurora Flight Sciences Odysseus Solar-Powered Aircraft
2.2.8 Insitu
2.2.9 Draganflyer X4 UAV
2.2.10 Boeing Insitu
2.2.11 DRS Unmanned Technologies Ground Control Stations
2.2.12 Proxy Aviation Systems
2.2.13 Northrop Grumman Bat 3
2.2.14 General Atomics Predator® UAS
2.2.15 General Atomics Predator® B UAS
2.2.16 Border Patrol / Law Enforcement Drone Unmanned Aerial Systems (UAS) Market Shares
2.2.17 Package Delivery Drone Unmanned Aerial Systems (UAS) Market Shares,
2.2.18 Google Package Delivery
2.2.19 Utility and Pipeline Inspection Drone Unmanned Aerial Systems (UAS) Market Shares
2.2.20 Agricultural Inspection and Planting Drone Unmanned Aerial Systems (UAS) Market Shares
2.2.21 Yamaha RMAX
2.2.22 Photography and Videography Drone Unmanned Aerial Systems (UAS) Market Shares
2.3 Commercial Drone Unmanned Aircraft Market Forecasts
2.3.1 Unmanned Aerial Systems (UAS), Market Total Forecasts
2.3.2 Small Commercial Drone Unmanned Aircraft Market Forecasts
2.3.1 Mid-Size Commercial Drone Unmanned Aircraft Market Forecasts
2.3.1 Small and Mid Size Commercial Drone Unmanned Aerial Systems
2.3.2 Commercial Drone Unmanned Aerial Systems (UAS), Market Forecasts by Sector
2.3.3 Commercial Drone UAS Wing Based Subsegments
2.4 Unmanned Aerial Systems Payloads
2.4.1 Composites Key to UAV Utility
2.5 Unmanned Airplane Regional Market Analysis
2.5.1 U.S Accounts for 73 Percent Of The Worldwide Research, Development, Test, And Evaluation (RDT&E) Spending On UAV Technology
2.5.2 Unmanned Aerial Vehicle (UAV) Industry Regional Summary
2.5.3 UAS Marketplace Moving Target
2.5.4 China
3. DRONES: COMMERCIAL UNMANNED AERIAL SYSTEMS (UAS) PRODUCT DESCRIPTION
3.1 AeroVironment
3.1.1 BP and AeroVironment Launch FAA-Approved, Commercial Unmanned Aircraft Operations
3.1.2 AeroVironment and Commercial UAV
3.1.3 AeroVironment AV's Family of Small UAS
3.1.4 AeroVironment Raven

3.2 Textron Aerosonde
3.2.1 Textron / Aerosonde AAI Services
3.2.2 Textron Systems AAI
3.2.3 Textron Systems AAI RQ-7B Shadow® Tactical UAS Unmanned Aircraft Systems (UAS)
3.2.4 Textron Systems AAI Shadow® Tactical Unmanned Aircraft System (TUAS)
3.2.5 AAI Shadow 400 Unmanned Aircraft Deployed With Allied Naval Forces
3.2.6 Textron Systems AAI Shadow 600 System
3.2.7 Textron
3.2.8 Textron Shadow® Reconnaissance, Surveillance
3.2.9 Textron Shadow® M2
3.2.10 Textron UAS Support
3.2.11 Textron UAS Training
3.2.12 Textron Systems AAI Ground Control Stations
3.2.13 Textron Systems AAI Remote Intelligence, Surveillance and Reconnaissance Terminals
3.2.14 Textron Systems AAI / Aerosonde®
3.2.15 Textron Systems AAI and Aeronautics Orbiter™
3.2.16 Textron Systems AAI Ground Control Stations
3.2.17 Textron Systems AAI Remote Intelligence, Surveillance and Reconnaissance Terminals
3.2.18 Textron Systems AAI One System Remote Video Terminal
3.2.19 Textron Systems AAI Tactical Sensor Intelligence Sharing System
3.2.20 Textron Systems Wasp Micro Air Vehicle (MAV)
3.2.21 Textron Systems Homeland Security
3.2.22 Nano Air Vehicle
3.3 Boeing
3.3.1 Boeing A160 Hummingbird Helicopter
3.3.2 Boeing Condor Unmanned Aerial Vehicle
3.3.3 Boeing ScanEagle Small Footprint UAS Solutions
3.4 BAE Systems
3.4.1 BAE Systems Unmanned Aerial Vehicle (UAV)
3.4.2 BAE Systems Compact Rotary Wing/UA V LDRF
3.4.3 BAE Systems Herti
3.4.4 BAE Systems Image Collection and Exploitation (ICE) Sensor Management System
3.4.5 BAE Systems Mantis
3.4.6 BAE Systems MIM500™ Series of Uncooled Infrared Camera Cores
3.4.7 BAE Systems Taranis
3.4.8 BAE Systems Taranis - Unmanned Combat Air Vehicle (UCAV)
3.4.9 BAE Systems Telemos
3.5 Aurora Flight Sciences Hale
3.5.1 Aurora SKATE - Small Unmanned Aircraft System
3.5.2 Aurora's Advanced Concepts: SunLight Eagle - Green Flight
3.5.3 Aurora's Excalibur
3.5.4 Aurora GoldenEye 80 - Small, Capable Surveillance UAS
3.5.5 Aurora's Advanced Concepts: UHATF
3.5.6 Aurora Flight Sciences Orion
3.5.7 Aurora Flight Sciences Odysseus Solar-Powered Aircraft
3.5.8 Aurora Flight Sciences Orion HALL
3.5.9 Aurora Flight Sciences Earth Science Applications
3.5.10 Aurora Small Unmanned Aerial Systems
3.5.11 Aurora Flight Sciences Skate
3.5.12 Aurora Tactical Systems
3.5.13 Aurora Diamond DA42 MPP
3.5.14 Aurora Excalibur
3.5.15 Aurora GoldenEye 50
3.5.16 Aurora GoldenEye 80
3.5.17 System Description
3.6 L-3 Communications UAS APEX Programs
3.6.1 L-3 Communications Next Generation Precision Unmanned Aircraft Systems
3.6.2 L-3 Communications Small Expendable Tube-Launched UAS
3.6.3 L-3's Mid-Tier UAS Programs
3.6.4 L-3 Communications Medium Altitude Long Endurance Unmanned Or Manned - Mobius
3.6.5 L-3 Communications Cutlass
3.6.6 L-3 Unmanned Systems' Viking 100 Runway Operations
3.6.7 L-3 Communications Viking 300 Runway Operations
3.6.8 L-3 Communications Viking 400
3.6.9 L-3 Communications TigerShark
3.6.10 L-3 Communications Generation IV Ground Control Station
3.6.11 L-3 Communications On-board Precision Automated Landing System (O-PALS)
3.6.12 L-3 Communications ISR Services
3.6.13 L-3 Communications System Integration and Technical Support
3.7 Challis Heliplane UAV Inc.
3.8 Draganfly Innovations Inc.
3.8.1 Draganflyer Guardian
3.8.2 Draganfly X4
3.8.3 Draganflyer X6
3.8.4 Draganflyer Aerial Photography & Video Applications
3.8.5 Draganflyer Real Estate Applications
3.8.6 Draganflyer Law Enforcement Applications
3.8.7 Draganflyer X8
3.9 DRS Unmanned Technologies Ground Control Stations
3.9.1 DRS Aircraft Monitoring Unit (AMU)
3.10 General Atomics Aeronautical Systems, Inc. (GA-ASI) Claw® Sensor Control
3.10.1 GA-ASI Athena RF Tag
3.10.2 General Atomics Aeronautical Systems GA - Predator® UAS
3.10.3 General Atomics Aeronautical Systems GA - Gray Eagle™ UAS
3.11 Boeing / Insitu / Commercial
3.11.1 Insitu Arctic Ice Floe Monitoring
3.11.2 Insitu Mammal Monitoring
3.11.3 Insitu Pipeline Surveys
3.11.4 Insitu Power-Line Inspections
3.11.5 Insitu Geomagnetic Surveys
3.11.6 Insitu Commercial Fishing
3.11.7 Insitu Public Safety
3.11.8 Insitu Disaster Response
3.11.9 Insitu Search and Rescue
3.11.10 Insitu Port and Border Security
3.11.11 Insitu Communications Relay
3.11.12 Insitu Over-the-Horizon Sensing
3.11.13 Insitu Counter-Narcotics
3.11.14 Insitu Offshore Base
3.11.15 Insitu Defense
3.11.16 Insitu Payload Systems
3.11.17 Insitu Force Protection
3.11.18 Insitu Combined Arms
3.11.19 Insitu Research Future of UAS Operations and Technology
3.11.20 Insitu ICOMC2 Streamline Process
3.11.21 Insitu ICOMC2's Breakthrough Technology Extends Drone Capabilities
3.11.22 Boeing / Insitu ScanEagle
3.11.23 Insitu Integrator
3.11.24 Insitu NightEagle
3.12 Integrated Dynamics
3.12.1 Integrated Dynamics Skycam
3.12.2 Integrated Dynamics Pride
3.12.3 Integrated Dynamics Spirit
3.12.4 Integrated Dynamics Border Eagle MK - II
3.12.5 Integrated Dynamics Hornet
3.12.6 Integrated Dynamics HAWK MK - V
3.12.7 Integrated Dynamics VISION UAV systems
3.12.8 Integrated Dynamics VISION MK I
3.12.9 Integrated Dynamics Vision M K - I I
3.12.11 Integrated Dynamics Vector
3.12.12 Integrated Dynamics Tornado
3.12.13 Integrated Dynamics Nishan MK - II
3.12.14 Integrated Dynamics Nishan Tj - 1000
3.12.15 Integrated Dynamics Rover
3.12.16 Integrated Dynamics Explorer
3.13 MMIST Mist Mobility
3.13.1 MMist Unmanned Logistics Air Vehicle (ULAV)
3.13.2 Sherpa Ranger / MMist
3.14 Marcus UAV Systems
3.14.1 Marcus Autopilots
3.15 Proxy Aviation Systems
3.15.1 Proxy PROTEUS™
3.15.2 Proxy PACS
3.15.3 Operator The Proxy Autonomous Control Suite (PACS™) Virtual Pilot / Virtual 355
3.15.4 Proxy Cooperative Control/UDMS
3.15.5 Proxy SkyRaider
3.16 LaserMotive
3.16.1 LaserMotive UAV Power Links
3.16.2 LaserMotive Teams with Germany's Ascending Technologies
3.17 China Aerospace Science & Industry Corp Jet-Powered WJ600
3.17.1 Chinese Naval UAS
3.18 ASN Technology Group
3.19 Boeing X-37B Space Shuttle
3.20 Northrop Grumman / Scaled Composites
3.20.1 Proteus
3.21 Schiebel Camcopter S-100
3.21.1 Schiebel Camcopter Target Markets:
3.22 Parrot AR.Drone 2.0 $299, Flies Off a Roof
3.23 Google
3.23.1 Google Loon
3.23.2 Google Loon Balloon Project
3.23.3 Google Titan Aerospace
3.24 Facebook
3.25 Outernet Beamed Via Satellite
3.25.1 Outernet Mobile Cloud Network Infrastructure
3.26 Lockheed Martin Expeditionary Ground Control System
3.26.1 Lockheed Martin Integrated Sensor Is Structure (ISIS)
3.26.2 Operations Lockheed Martin Integrated Sensor IS Structure (ISIS) Concept of
3.26.3 Lockheed Martin K-MAX Unmanned Helicopter
3.26.4 Lockheed Martin K-MAX Used By Commercial Operators
3.26.5 Lockheed Martin ARES
3.26.6 Lockheed Martin Desert Hawk III
3.26.7 Lockheed Martin Fury
3.26.8 Lockheed Martin Expeditionary Ground Control System
3.26.9 Lockheed Martin Remote Minehunting System
3.26.10 Lockheed Martin Marlin
3.26.11 Lockheed Martin Persistent Threat Detection System
3.26.12 Lockheed Martin Stalker UAS Package Delivery
3.26.13 Lockheed Martin Stalker Droppable Payload
3.27 Northrop Grumman
3.27.1 Northrop Grumman MLB Company
3.27.2 Northrop Grumman.Bat 3
3.27.3 Northrop Grumman BAT 4 UAV
3.27.4 Northrop Grumman V-BAT UAV
3.27.5 Northrop Grumman Super Bat with Piccolo II Autopilot and TASE 416
3.27.6 Northrop Grumman Unmanned Aerial Systems
3.27.7 Northrop Grumman Bat Unmanned Aircraft System (UAS)
3.27.8 Northrop Grumman Firebird
3.27.9 Northrop Grumman Persistent Multiple Intelligence Gathering Air System
3.27.10 Northrop Grumman M324 UAS (Unmanned Aerial System)
3.27.11 Northrop Grumman RQ-4 Block 20 Global Hawk
3.27.12 Northrop Grumman Drone Program Overview
3.27.13 Northrop Grumman Block 20 Global Hawk Specification
3.27.14 Northrop Grumman Euro Hawk®
3.27.15 Northrop Grumman Triton
3.27.16 Northrop Grumman's MQ-4C Triton Program:
3.27.17 Northrop Grumman Common Mission Management System (CMMS)
3.27.18 Northrop Grumman Solution
3.27.19 Northrop Grumman RQ-4 Global Hawk
3.27.20 Northrop Grumman Global Hawk (U.S. Air Force) RQ-4 Programs
3.27.21 Northrop Grumman GHMD (U.S. Navy
3.27.22 NASA Global Hawk (NASA Dryden)
3.27.23 NATO AGS (U.S. and Allied Nations)
3.27.24 Northrop Grumman X-47B UCAS
3.27.25 Northrop Grumman Fire-X Medium-Range Vertical Unmanned Aircraft System
3.28 General Atomics® UAS
3.28.1 General Atomics Predator® B UAS
3.28.2 General Atomics Gray Eagle™ UAS
3.28.3 General Atomics Predator Jet Performance C Avenger® UAS
3.28.4 General Atomics Aeronautical Systems MQ-1B Predator

4. COMMERCIAL UNMANNED AERIAL SYSTEMS (UAS) TECHNOLOGY
4.1 Learning to Fly a Hobby or Commercial Drone
4.1.1 US FAA Launches Drone Safety Campaign
4.2 UAS Sense and Avoid Evolution Avionics Approach
4.3 Northrop Grumman BAT UAV Open Architecture
4.4 Integrated Dynamics Flight Telecommand & Control Systems
4.4.1 AP 2000
4.4.2 AP 5000
4.4.3 IFCS-6000 (Integrated Autonomous Flight Control System)
4.4.4 IFCS-7000 (Integrated Autonomous Flight Control System)
4.4.5 Portable Telecommand And Control System (P.T.C.S.)
4.5 Integrated Radio Guidance Transmitter (IRGX)
4.5.1 Portable Telecommand And Control System (P.T.C.S.)
4.6 IRGX (Integrated Radio Guidance Transmitter)
4.6.1 Ground Control Stations
4.6.2 GCS 1200
4.6.3 GCS 2000
4.7 Antenna Tracking Systems
4.8 ATPS 1200
4.8.1 ATPS 2000
4.8.2 Gyro Stabilized Payloads
4.8.3 GSP 100
4.8.4 GSP 900
4.8.5 GSP 1200
4.9 Civilian UAVs - Rover Systemstm
4.10 CPI-406 Deployable Emergency Locator Transmitter (ELT)
4.10.1 Deployable Flight Incident Recorder Set (DFIRS)
4.10.2 Airborne Separation Video System (ASVS)
4.10.3 Airborne Separation Video System - Remote Sensor (ASVS - RS)
4.10.4 Airborne Tactical Server (ATS)
4.11 Aurora Very High-Altitude Propulsion System (VHAPS)
4.12 Aurora Autonomy & Flight Control
4.12.1 Aurora Guidance Sensors And Control Systems MAV Guidance
4.12.2 Aurora Multi-Vehicle Cooperative Control for Air and Sea Vehicles in Littoral Operations (UAV/USV)
4.12.3 Aurora and MIT On-board Planning System for UAVs Supporting Expeditionary Reconnaissance and Surveillance (OPS-USERS)
4.12.4 Aurora Flare Planning
4.12.5 Aurora Distributed Sensor Fusion
4.12.6 Aurora Aerospace Electronics
4.12.7 Aurora is CTC-REF
4.13 Space Technologies: Autonomous Control of Space Nuclear Reactors (ACSNR)
4.13.1 Rule-based Asset Management for Space Exploration Systems (RAMSES)
4.13.2 Synchronized Position Hold, Engage & Reorient Experiment Satellites (SPHERES)
4.14 Positive Pressure Relief Valve (PPRV)
4.14.1 Chip-Scale Atomic Clock (CSAC)
4.14.2 Low-design-Impact Inspection Vehicle (LIIVe)
4.14.3 Synthetic Imaging Maneuver Optimization (SIMO)
4.15 Persistent, Long-Range Reconnaissance Capabilities
4.15.1 United States Navy's Broad Area Maritime Surveillance (BAMS) Unmanned Aircraft System (UAS) program
4.15.2 Navy Unmanned Combat Air System UCAS Program:
4.15.3 Navy Unmanned Combat Air System UCAS: Objectives:
4.16 Search and Rescue (SAR)
4.17 L-3 Communications LinkTEK™ IDS
4.18 L-3 Communications FlightTEK® SMC
4.18.1 Helicopter Main Limiting Factor Retreating Blade Stall
4.19 Draganflyer X4 Applications
4.19.1 Draganflyer X4 Large Project Management
4.19.2 Draganflyer Remote Supervision and Investigation of Equipment
4.19.3 Draganflyer Remote Supervision and Investigation of Agricultural Land and Equipment
4.19.4 Draganflyer Advanced RC Flight Research
4.19.5 Aerial Archeology
4.19.6 Environmental Assessment
4.19.7 The Draganflyer X4 is Fun to Fly

5 DRONE COMPANY DESCRIPTION
5.1 AeroVironment
5.2 ASN Technologies
5.3 Aurora Flight
5.3.1 Aurora 2013 Employee Exceptional Service Award
5.4 BAE Systems
5.5 Boeing
5.5.1 Boeing Commercial Airplanes
5.5.2 Boeing Defense, Space & Security
5.5.3 Boeing Capital Corporation
5.5.4 Boeing Engineering, Operations & Technology
5.5.5 Boeing Shared Services Group
5.5.6 Boeing Revenue by Segment
5.5.7 Boeing / Insitu
5.5.8 Boeing Defense, Space & Security
5.6 Challis UAV Inc.
5.7 China Aerospace
5.7.1 China Aerospace CASC Space Technology
5.7.2 China Aerospace CASC Revenue
5.8 Draganflyer
5.8.1 DraganBot
5.8.2 Draganflyer ABEX Awards
5.9 Finmeccanica
5.9.1 DRS Technologies
5.10 General Atomics
5.11 Google
5.11.1 Google Revenue
5.11.2 Google Second Quarter 2013 Results
5.11.3 Google Revenues by Segment and Geography
5.11.4 Google / Boston Dynamics
5.11.5 Boston Dynamics
5.11.6 Boston Dynamics LS3 - Legged Squad Support Systems
5.11.7 Boston Dynamics CHEETAH - Fastest Legged Robot
5.11.8 Boston Dynamics Atlas - The Agile Anthropomorphic Robot
5.11.9 Boston Dynamics BigDog
5.11.10 Boston Dynamics LittleDog - The Legged Locomotion Learning Robot
5.11.11 Google Robotic Division
5.11.12 Google Self-Driving Car
5.11.13 Google Cars Address Vast Majority Of Vehicle Accidents Due To Human Error
5.11.14 Google Business
5.11.15 Google Corporate Highlights
5.11.16 Google Search
5.12 Integrated Dynamics
5.13 L-3 Communications
5.13.1 L-3 Aerospace Systems
5.13.2 L-3 Electronic Systems
5.13.3 L-3 Communication Systems
5.13.4 L-3 National Security Solutions
5.13.5 L-3 Revenue by Segment
5.14 Laser Motive
5.15 Lockheed Martin
5.15.2 Lockheed Martin Symphony Improvised Explosive Device Jammer Systems 598
5.15.3 Lockheed Martin Aeronautics Revenue
5.15.4 Lockheed Martin Electronic Systems
5.15.5 Lockheed Martin
5.16 Marcus UAV
5.17 MMlist
5.16.1 MMIST Sherpatm Guided Parachute System
5.16.2 MMIST SnowGoosetm CQ-10A Unmanned Aerial System (UAS)
5.17 Northrop Grumman
5.17.1 Northrop Grumman Revenue
5.17.2 Northrop Grumman Remotec
5.17.3 Northrop Grumman Leading Global Security Company
5.17.4 Northrop Grumman Supplies Marine Navigation Equipment
5.17.5 Northrop Grumman Recognized by UK Ministry of Defense for Role in Supporting Sentry AWACS Aircraft During Military Operations in Libya
5.17.6 Northrop Grumman Corporation Subsidiary Remotec Inc. upgrade the U.S. Air Force fleet of Andros HD-1
5.17.7 Northrop Grumman NAV CANADA Supplier
5.18 Parrot/senseFly
5.18.1 Parrot Group / senseFly
5.18.2 Parrot Group senseFly CTI Certified
5.19 Proxy Technologies
5.20 Scaled Composites
5.21 Schiebel
5.22 Textron

List of Tables and Figures:
Table ES-1 Commercial Drone Unmanned Aerial Systems Functions
Table ES-2 Commercial Drone Unmanned Aerial Systems Features
Table ES-3 Commercial Drone Unmanned Aerial Systems Mission Tasks
Table ES-4 Commercial Drone Unmanned Aerial Systems (UAS) Benefits
Table ES-5 Commercial Drone UAS Features
Table ES-6 Commercial Drone Unmanned Aerial Systems Functions
Table ES-7 Commercial Drone Unmanned Aerial Systems Features
Table ES-8 Commercial Drone Unmanned Aerial Systems Mission Tasks
Table ES-9 Commercial Drone Unmanned Aerial Systems (UAS) Benefits
Figure ES-10 Commercial Drone Unmanned Aerial Systems (UAS) Market Shares, Dollars,
Figure ES-11 Commercial Drone Unmanned Aerial Systems (UAS), Market Forecasts Dollars, Worldwide, 2015 -2021
Table 1-1 Ability Of Commercial Drones UASs To Perform Delivery Function
Figure 1-2 Increase In Resolution That Is Possible With Georeferenced Imagery
Table 1-3 Department of Transportation Applications
Table 1-4 Unmanned Aerial Systems (UAS) Homeland Security Sites To Be Monitored
Table 2-1 Commercial Drone Unmanned Aerial Systems Functions
Table 2-2 Commercial Drone Unmanned Aerial Systems Features
Table 2-3 Commercial Drone Unmanned Aerial Systems Mission Tasks
Table 2-4 Commercial Drone Unmanned Aerial Systems (UAS) Benefits
Table 2-5 Commercial Drone UAS Features
Table 2-6 Commercial Drone Unmanned Aerial Systems Functions
Table 2-7 Commercial Drone Unmanned Aerial Systems Features
Table 2-8 Commercial Drone Unmanned Aerial Systems Mission Tasks
Table 2-9 Commercial Drone Unmanned Aerial Systems (UAS) Benefits
Figure 2-10 Commercial Drone Unmanned Aerial Systems (UAS) Market Shares, Dollars,
Table 2-11 Commercial Drone Unmanned Aerial Systems (UAS) Market Shares, Dollars, Worldwide, 2014
Table 2-12 Commercial Drone Unmanned Aerial Systems (UAS) Market Shares, Units and Dollars, Worldwide, 2014
Figure 2-13 BP and AeroVironment Drone for Comprehensive GIS Services
Figure 2-14 AeroVironment Switchblade Tactical Missile System
Figure 2-15 Textron Shadow
Figure 2-16 General Atomics Predator UAS
Figure 2-17 General Atomics Predator B UAS
Table 2-18 Border Patrol / Law Enforcement Drone Unmanned Aerial Systems (UAS) Market Shares, Dollars, Worldwide, 2014
Table 2-19 Package Delivery Drone Unmanned Aerial Systems (UAS) Market Shares, Dollars, Worldwide, 2014
Table 2-20 Utility and Pipeline Inspection Drone Unmanned Aerial Systems (UAS) Market Shares
Figure 4-21 Draganflyer Pipeline / Hydro-Transmission Line Inspection
Table 2-22 Agricultural Inspection and Planting Drone Unmanned Aerial Systems (UAS) Market Shares, Dollars, Worldwide, 2014
Figure 2-23 Yamaha Helicopter Drone Spraying
Figure 2-24 Yamaha RMAX Helicopter Drones
Figure 2-26 Commercial Drone Unmanned Aerial Systems (UAS), Market Forecasts Dollars, Worldwide, 2015-2021
Figure 2-27 Commercial Drone Unmanned Aerial Systems (UAS) Market Forecasts, Units, Worldwide, 2015-2021
Table 2-28 Commercial Drone Unmanned Aerial Systems Markets, Dollars, Worldwide, 2014-2021
Figure 2-29 Small Commercial Drone Unmanned Aerial Systems (UAS) Market Forecasts, Dollars, Worldwide, 2015-2021
Figure 2-30 Small Commercial Drone Unmanned Aerial Systems (UAS) Market Forecasts, Units, Worldwide, 2015-2021
Figure 2-31 Mid Size Commercial Drone Unmanned Aerial Systems Forecasts, Dollars, Worldwide, 2015-2021
Figure 2-32 Mid-Range Commercial Drone Unmanned Aerial Systems (UAS) Market Forecasts, Units, Worldwide, 2015-2021
Table 2-33 Small and Mid-Size Commercial Drone Unmanned Aerial Systems Dollars and Units, Worldwide, 2015-2021
Table 2-34 Commercial Drone Unmanned Aerial Systems (UAS) by Sector, Agriculture, Oil and Gas, Border Patrol, Disaster Response, Dollars, Worldwide, 2015-2021
Table 2-35 Commercial Drone Unmanned Aerial Systems (UAS) by Sector, Agriculture, Oil and Gas, Border Patrol, Disaster Response, Percent, Worldwide, 2015-2021
Table 2-36 Commercial Drone Unmanned Aerial Systems (UAS) Applications, Dollars Worldwide, 2015
Figure 2-37 Commercial Drone Unmanned Aerial Systems (UAS) Market Segments, Dollars, 2014
Figure 2-38 Commercial Drone Unmanned Aerial Systems (UAS) Market Segments, Dollars, 2021
Figure 2-39 Commercial Drone Unmanned Aerial Systems (UAS) by Sector, Agriculture, Oil and Gas, Border Patrol, Disaster Response, Dollars, Worldwide, 2015-2021
Figure 2-40 Commercial Drone Unmanned Aerial Systems (UAS) by Sector, Agriculture, Oil and Gas, Border Patrol, Disaster Response, Percent, Worldwide, 2015-2021
Figure 2-41 Commercial Drone Unmanned Aerial Systems Vehicle (UAS) Regional Market Segments, Dollars, 2014
Table 2-42 Commercial Drone Unmanned Aerial Systems (UAS) Regional Market Segments, 2014
Figure 3-1 BP and AeroVironment Drone for Comprehensive GIS Services
Figure 3-2 AeroVironment Commercial UAV
Figure 3-3 AeroVironment UAS: Raven
Figure 3-4 AeroVironment Raven
Table 3-5 Textron / Aerosonde Aircraft Flight Milestones And Capabilities
Table 3-6 Aerosonde Service Capabilities
Table 3-7 Textron AAI Optimization For The Aircraft For Military Missions
Figure 3-8 Textron Systems AAI Shadow
Figure 3-9 Textron Systems AAI Shadow 600 System
Figure 3-10 Textron Shadow
Figure 3-11 Textron Shadow M2
Table 3-12 Textron Shadow M2 Features;
Table 3-13 Textron Drone Services Positioning
Table 3-14 Textron Training Domains And Capabilities
Table 3-15 Textron Systems AAI Ground Control Stations
Table 3-16 Textron Systems AAI Remote Intelligence, Surveillance and Reconnaissance Terminals
Figure 3-17 Textron Systems UAS: Wasp
Table 3-18
Table 3-19 Textron Systems Global Observer Features
Figure 3-20 Boeing A160 Hummingbird Unmanned Aerial Vehicle
Figure 3-21 Boeing Condor Unmanned Aerial Vehicle
Table 3-23 Boeing-Insitu ScanEagle In Service Views
Figure 3-24 Boeing ScanEagle
Figure 3-25 BAE Systems Compact Rotary Wing / UAV LDRF
Figure 3-26 BAE Systems Herti Next Generation Autonomous Air System
Table 3-27 BAE Systems Herti Key Roles
Table 3-28 BAE Systems Herti Key Specifications
Figure 3-29 BAE Systems MANTIS
Table 3-30 BAE Systems Mantis Functions
Figure 3-31 BAE Systems MIM500™ Series Of Uncooled Infrared Camera Cores
Table 3-32 BAE Systems MIM500 Camera Functions
Figure 3-33 BAE Systems Taranis
Figure 3-34 BAE Systems Telemos
Figure 3-35 Aurora Flight Sciences UAS
Table 3-36 Aurora Flight Sciences Tactical UAVs
Figure 3-37 Aurora Flight Sciences Orion
Figure 3-38 Aurora Flight Sciences Orion Magic JCTD
Figure 3-39 Aurora Skate
Table 3-40 Aurora's Line of Tactical UAVs
Table 3-41 Aurora DA42 MPP Features
Table 3-42 Aurora DA42 MPP Features
Table 3-43 Aurora DA42 MPP Target Applications
Figure 3-44 Aurora Excalibur
Table 3-45 Aurora GoldenEye 80 Air Vehicle Planned Design Improvements
Figure 3-46 Aurora GoldenEye 80
Figure 3-47 L-3 Communications APEX
Figure 3-48 L-3 Communications Next Generation Precision Unmanned Aircraft Systems
Figure 3-49 L-3 Communications Cutlass Launching From Ground And Air Tubes
Table 3-50 L-3 Communications Cutlass Launching Alternatives
Table 3-51 L-3 Communications Cutlass Functions
Figure 3-52 L-3 Communications Cutlass
Figure 3-53 L-3 Communications Mid-Tier Filling The Gap Between Tactical And Male UAS
Table3-54 L-3's Mid-Tier UAS Program Functions
Figure 3-55 L-3 Communications Medium Altitude Long Endurance Unmanned Or Manned - Mobius
Table 3-56 L-3 Communications Mobius Proven Airframe Features
Figure 3-57 L-3 Communications Mobius™
Figure 3-58 L-3 Communications Cutlass
Table 3-59 L-3 Communications Cutlass Tube-Launched Small UAS Key Features
Table 3-60 L-3 Unmanned Systems' Viking 100 Key Features
Table 3-61 L-3 Unmanned Systems' Viking 300 Key Features
Table 3-62 L-3 Unmanned Systems' Viking 400 Key Features
Table 3-63 L-3 Unmanned Systems' TigerShark Key Features
Table 3-64 L-3 Unmanned Systems' TigerShark Unmanned Aircraft System (UAS) Functions
Table 3-65 L-3 Unmanned Systems' Communications Generation IV Ground Control Station Key Features
Table 3-66 L-3 Unmanned Systems Communications On-board Precision Automated Landing System Key Features
Table 3-67 L-3 Unmanned Systems ISR Services
Figure 3-68 Challis Heliplane
Figure 3-69 Challis CH-160 Heliplane Specifications
Figure 3-70 Challis Velocity Raptor Heliplane Specifications
Figure 3-71 Draganflyer Guardian
Figure 3-72 Draganflyer Camera
Figure 3-73 Draganflyer Camera Modules
Figure 3-74 Draganflyer Camera Operator Module
Figure 3-75 Draganflyer Hovering Source: Draganflyer.
Figure 3-76 Draganflyer Quad Rotor Provides Flight Stability Source: Draganflyer.
Figure 3-77 Draganflyer X6 Remotely Operated, Unmanned, Miniature Helicopter
Figure 3-78 Draganflyer Compact Foldable Frame Source: Draganflyer.
Figure 3-79 Draganflyer Camera Real Estate Applications
Figure 3-80 Draganflyer Camera Law Enforcement Applications
Figure 3-81 Draganflyer Camera Traffic Applications
Figure 3-82 Draganflyer Tactical Surveillance
Figure 3-83 Draganflyer X8 Helicopter
Figure 3-84 DraganFlyer X8 Helicopter Eight Main Horizontal Rotor Blades
Table 3-85 Griffin Eye Manned ISR System Claw® Sensor Control Functions
Figure 3-86 GA-ASI GMTI to EO/IR
Figure 3-87 GA-ASI Select targets by RCS or Size
Figure 3-88 GA-ASI Annotation of Sensor Products
Figure 3-89 GA-ASI Optical Change Detection
Figure 3-90 GA-ASI Aided Target Classification Based On Sensor Model
Figure 3-91 GA-ASI Multi-Spectral Image Viewer
Figure 3-92 General Atomics Aeronautical Systems GA-ASI Stealthy Blue Force Tracking Device
Table 3-93 General Atomics Aeronautical Systems Predator UAS Features
Table 3-94 General Atomics Aeronautical Systems Gray Eagle Features
Figure 3-95 Boeing Insitu ScanEagle 2 - the Next Generation Platform
Table 3-96 Insitu Industry Standards Best Practices Partners
Table 3-97 Insitu ICOMC2's Breakthrough Technology Capabilities
TABLE 3-98 Insitu ICOMC2 Technology Upgrade For Emergency Response
Figure 3-99 Insitu ScanEagle
Figure 3-100 Insitu Integrator Sustainment Operations
Figure 3-101 Insitu NightEagle
Figure 3-102 Integrated Dynamics Skycam
Figure 3-103 Integrated Dynamics Pride
Figure 3-104 Integrated Dynamics Spirit
Figure 3-105 Integrated Dynamics UAV Airframe Systems
Figure 3-106 Integrated Dynamics Border Eagle MK - II
Figure 3-107 Integrated Dynamics Hornet
Figure 3-108 Integrated Dynamics HAWK MK - V
Figure 3-109 Integrated Dynamics VISION MK I
Figure 3-110 Integrated Dynamics Vision M K - I I
Figure 3-111 Integrated Dynamics S/Integrated Dynamics Integrated Dynamics M K - I
Figure 3-112 Integrated Dynamics Vector
Figure 3-113 MMIST SnowGoose
Table 3-114 MMist CQ-10B advantages:
Table 3-115 MMist CQ-10 System
Figure 3-116 SherpaTM Ranger
Table 3-117 MMIST Shepra Characteristics
Table 3-118 Sherpa™ Systems Guidance Units
Table 3-119 Sherpa™ Provider Advantages:
Figure 3-120 MMist Payload
Figure 3-121 Marcus Zephyr Airframes UAV Systems
Table 3-122 Marcus Zephyr Airframes UAV Systems Specifications:
Table 3-123 The Proxy Autonomous Control Suite (PACS™) Principal Subsystem Elements:
Table 3-124 Proxy SkyRaider Benefits:
Table 3-125 Proxy Aviation UAV capabilities
Figure 3-126 Chinese Jet-Powered Wj600 Chinese jet-powered Wj600
Figure 3-127 Chinese UAS
Table 3-128 Chinese V750 Helicopter Drone
Table 3-129 Air Show China 2010 J10 Chinese Fighter Jets
Figure 3-130 Boeing X-37B Space Shuttle
Table 3-131 Schiebel Camcopter Target Markets:
Figure 3-132 Airborne Parrot
Figure 3-133 Airborne Parrot AR.Drone 2.0
Figure 3-134 Google Design Called A Tail Sitter, A Hybrid Of A Plane And A Helicopter
Figure 3-135 Project Loon Balloons Float In The Stratosphere
Figure 3-136 Google Loon Balloon
Figure 3-137 Google Titan Aerospace
Figure 3-138 Planet Lab CubeSats As Model for Outernet Beamed Via Satellite
Figure 3-139 Lockheed Martin Expeditionary Ground Control System
Table 3-140 Lockheed Martin Expeditionary Ground Control System Features

Figure 3-141 Lockheed Martin Integrated Sensor Is Structure (ISIS)

Table 3-142 Lockheed Martin Integrated Sensor Is Structure (ISIS) Capabilities

Table 3-143 Lockheed Martin Integrated Sensor Is Structure (ISIS) Key Features

Table 3-144 Lockheed Martin K-MAX Unmanned Helicopter Functions

Figure 3-145 Lockheed Martin K-MAX Unmanned Helicopter

Figure 3-146 Lockheed Martin ARES

Figure 3-147 Lockheed Martin Desert Hawk III

Figure 3-148 Lockheed Martin Fury

Table 3-149 Lockheed Martin Fury Features

Figure 3-150 Lockheed Martin Expeditionary Ground Control System

Table 3-151 Expeditionary Ground Control System Modules:

Figure 3-152 Lockheed Martin Remote Minehunting System

Figure 3-153 Lockheed Martin Marlin

Figure 3-154 Lockheed Martin Persistent Threat Detection System

Figure 3-155 Lockheed Martin Stalker UAS

Table 3-156 Lockhe...
Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct and select the format(s) you require.

Web Address: http://www.researchandmarkets.com/reports/3066945/
Office Code: SCH3PUV3

Product Formats
Please select the product formats and quantity you require:

<table>
<thead>
<tr>
<th>Quantity</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard Copy</td>
<td>USD 3900 + USD 58 Shipping/Handling</td>
</tr>
<tr>
<td>Electronic (PDF) - Single User</td>
<td>USD 3900</td>
</tr>
<tr>
<td>Electronic (PDF) - Enterprisewide</td>
<td>USD 7800</td>
</tr>
</tbody>
</table>

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title: Mr Mrs Dr Miss Ms Prof
First Name: ___ Last Name: ____________________________
Email Address: * ______________________________________
Job Title: ___
Organisation: ___
Address: __
City: ___
Postal / Zip Code: ____________________________________
Country: ___
Phone Number: __
Fax Number: __

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: _______________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World