Low-Frequency Electromagnetic Modeling for Electrical and Biological Systems Using MATLAB

Description: Provides a detailed and systematic description of the Method of Moments (Boundary Element Method) for electromagnetic modeling at low frequencies and includes hands-on, application-based MATLAB® modules with user-friendly and intuitive GUI and a highly visualized interactive output.

Includes a full-body computational human phantom with over 120 triangular surface meshes extracted from the Visible Human Project® Female dataset of the National library of Medicine and fully compatible with MATLAB and major commercial FEM/BEM electromagnetic software simulators.

This book covers the basic concepts of computational low-frequency electromagnetics in an application-based format and hones the knowledge of these concepts with hands-on MATLAB® modules. The book is divided into five parts. Part 1 discusses low-frequency electromagnetics, basic theory of triangular surface mesh generation, and computational human phantoms. Part 2 covers electrostatics of conductors and dielectrics, and direct current flow. Linear magnetostatics is analyzed in Part 3. Part 4 examines theory and applications of eddy currents. Finally, Part 5 evaluates nonlinear electrostatics. Application examples included in this book cover all major subjects of low-frequency electromagnetic theory. In addition, this book includes complete or summarized analytical solutions to a large number of quasi-static electromagnetic problems. Each Chapter concludes with a summary of the corresponding MATLAB® modules.

- Combines fundamental electromagnetic theory and application-oriented computation algorithms in the form of stand alone MATLAB® modules
- Makes use of the three-dimensional Method of Moments (MoM) for static and quasistatic electromagnetic problems
- Contains a detailed full-body computational human phantom from the Visible Human Project® Female, embedded implant models, and a collection of homogeneous human shells

Low-Frequency Electromagnetic Modeling for Electrical and Biological Systems Using MATLAB® is a resource for electrical and biomedical engineering students and practicing researchers, engineers, and medical doctors working on low-frequency modeling and bioelectromagnetic applications.

Sergey N. Makarov is a Professor in the Department of Electrical and Computer Engineering at Worcester Polytechnic Institute (WPI).

Gregory M. Noetscher is a Senior Research Electrical Engineer at the U.S. Army Natick Soldier Research, Development and Engineering Center (NSRDEC) in Natick, MA.

Ara Nazarian is an Assistant Professor of Orthopaedic Surgery, Harvard Medical School, Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center (BIDMC).

Contents: PREFACE xi
ACKNOWLEDGMENTS xv
ABOUT THE COMPANION WEBSITE xvii
PART I LOW-FREQUENCY ELECTROMAGNETICS.COMPUTATIONAL MESHES.COMPUTATIONAL PHANTOMS 1

1 Classification of Low-Frequency Electromagnetic Problems. Poisson and Laplace Equations in Integral Form 3

Introduction 3

1.1 Classification of Low-Frequency Electromagnetic Problems 4
6 Electrostatics of Dielectrics and Conductors 215

Introduction 215

6.1 Dielectric Object in an External Electric Field 216

6.2 Combined Metal Dielectric Structures 229

6.3 Application Example: Modeling Charges in Capacitive Touchscreens 239

6.4 Summary of MATLAB® Modules 245

References 253

7 Transmission Lines: Two-Dimensional Version of the Method of Moments 257

Introduction 257

7.1 Transmission Lines: Value of the Electrostatic Model Analytical Solutions 258

7.2 The 2D Version of the MoM for Transmission Lines 273

7.3 Summary of MATLAB® Modules 284

References 287

8 Steady-State Current Flow 289

Introduction 289

8.1 Boundary Conditions. Integral Equation. Voltage and Current Electrodes 290

8.2 Analytical Solutions for DC Flow in Volumetric Conducting Objects 300

8.3 MoM Algorithm for DC Flow. Construction of Electrode Mesh 311

8.4 Application Example: EIT 320

8.5 Application Example: tDCS 327

8.6 Summary of MATLAB® Modules 336

References 341

PART III LINEAR MAGNETOSTATICS 347

9 Linear Magnetostatics: Surface Charge Method 349

Introduction 349

9.1 Integral Equation of Magnetostatics: Surface Charge Method 350

9.2 Analytical versus Numerical Solutions: Modeling Magnetic Shielding 358

9.3 Summary of MATLAB® Modules 367

References 369

10 Inductance. Coupled Inductors. Modeling of a Magnetic Yoke 371

Introduction 371

10.1 Inductance 372
10.2 Mutual Inductance and Systems of Coupled Inductors 385
10.3 Modeling of a Magnetic Yoke 404
10.4 Summary of MATLAB® Modules 415
References 421
PART IV THEORY AND APPLICATIONS OF EDDY CURRENTS 423
11 Fundamentals of Eddy Currents 425
Introduction 425
11.1 Three Types of Eddy Current Approximations 426
11.2 Exact Solution for Eddy Currents without Surface Charges Created by Horizontal Loops of Current 440
11.3 Exact Solution for a Sphere in an External AC Magnetic Field 453
11.4 A Simple Approximate Solution for Eddy Currents in a Weakly Conducting Medium 460
11.5 Summary of MATLAB® Modules 464
References 470
12 Computation of Eddy Currents via the Surface Charge Method 473
Introduction 473
12.1 Numerical Solution in a Weakly Conducting Medium with External Magnetic Field 474
12.2 Comparison with FEM Solutions from Maxwell 3D of ANSYS: Solution Convergence 481
12.3 Eddy Currents Excited by a Coil 488
12.4 Summary of MATLAB® Modules 497
References 504
PART V NONLINEAR ELECTROSTATICS 507
13 Electrostatic Model of a pn–Junction: Governing Equations and Boundary Conditions 509
Introduction 509
13.1 Built-in Voltage of a pn–Junction 510
13.2 Complete Electrostatic Model of a pn–Junction 533
References 545
14 Numerical Simulation of pn–Junction and Related Problems: Gummel’s Iterative Solution 547
Introduction 547
14.1 Iterative Solution for Zero Bias Voltage 548
14.2 Numerical Solution for the Electric Field Region 560
14.3 Analytical Solution for the Diffusion Region: Shockley Equation 579
14.4 Summary of MATLAB® Modules 587

References 588

INDEX 591

Ordering:

Order Online - http://www.researchandmarkets.com/reports/3089690/

Order by Fax - using the form below

Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

<table>
<thead>
<tr>
<th>Product Name:</th>
<th>Low-Frequency Electromagnetic Modeling for Electrical and Biological Systems Using MATLAB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Web Address:</td>
<td>http://www.researchandmarkets.com/reports/3089690/</td>
</tr>
<tr>
<td>Office Code:</td>
<td>SCDKLG3L</td>
</tr>
</tbody>
</table>

Product Format
Please select the product format and quantity you require:

| Hard Copy (Hard Back): | USD 147 + USD 29 Shipping/Handling |

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in BLOCK CAPITALS

<table>
<thead>
<tr>
<th>Title:</th>
<th>Mr ☐ Mrs ☐ Dr ☐ Miss ☐ Ms ☐ Prof ☐</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Name:</td>
<td>Last Name:</td>
</tr>
<tr>
<td>Email Address:</td>
<td>*</td>
</tr>
<tr>
<td>Job Title:</td>
<td></td>
</tr>
<tr>
<td>Organisation:</td>
<td></td>
</tr>
<tr>
<td>Address:</td>
<td></td>
</tr>
<tr>
<td>City:</td>
<td></td>
</tr>
<tr>
<td>Postal / Zip Code:</td>
<td></td>
</tr>
<tr>
<td>Country:</td>
<td></td>
</tr>
<tr>
<td>Phone Number:</td>
<td></td>
</tr>
<tr>
<td>Fax Number:</td>
<td></td>
</tr>
</tbody>
</table>

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: ____________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World