New Techniques in Digital Holography

Description: A state of the art presentation of important advances in the field of digital holography, detailing advances related to fundamentals of digital holography, in-line holography applied to fluid mechanics, digital color holography, digital holographic microscopy, infrared holography, special techniques in full field vibrometry and inverse problems in digital holography

Contents:
INTRODUCTION xi
Pascal PICART

CHAPTER 1. BASIC FUNDAMENTALS OF DIGITAL HOLOGRAPHY 1
Pascal PICART, Michel GROSS and Pierre MARQUET

1.1. Digital holograms 2
1.1.1. Interferences between the object and reference waves 2
1.1.2. Role of the image sensor 5
1.1.3. Demodulation of digital holograms 9
1.2. Back-propagation to the object plane 16
1.2.1. Monochromatic spherical and plane waves 17
1.2.2. Propagation equation 18
1.2.3. Angular spectrum transfer function 19
1.2.4. Kirchhoff and Rayleigh Sommerfeld formulas 21
1.2.5. Fresnel approximation and Fresnel diffraction integral 22
1.3. Numerical reconstruction of digital holograms 24
1.3.1. Discrete Fresnel transform 24
1.3.2. Reconstruction with convolution 30
1.4. Holographic setups 37
1.4.1. Fresnel holography 37
1.4.2. Fresnel holography with spatial spectrum reduction 38
1.4.3. Fourier holography 38
1.4.4. Lensless Fourier holography 39
1.4.5. Image-plane holography 40
1.4.6. Holographic microscopy 41
1.4.7. In-line Gabor holography 43
1.5. Digital holographic interferometry 45
3.4. Analysis of a hydrogen jet in a hypersonic flow 125
3.4.1. Experimental setup 126
3.4.2. Experimental results 128
3.4.3. Comparisons with numerical simulations 130
3.5. Conclusion 132
3.6. Acknowledgment 133
3.7. Bibliography 134

CHAPTER 4. AUTOMATION OF DIGITAL HOLOGRAPHIC DETECTION PROCEDURES FOR LIFE SCIENCES APPLICATIONS 137
Ahmed EL MALLAH, Christophe MINETTI and Frank DUBOIS

4.1. Introduction 137
4.2. Experimental protocol 139
4.2.1. Optical setup 139
4.2.2. Dynamic monitoring 140
4.3. General tools 140
4.3.1. Extraction of the full interferometric information 140
4.3.2. Compensation of the phase 141
4.3.3. Border processing 143
4.3.4. Best focus determination 144
4.4. Automated 3D detection 145
4.4.1. Introduction 145
4.4.2. Description of the testing samples 146
4.4.3. In–plane detection 147
4.4.4. In–depth detection 158
4.4.5. Discussion 160
4.5. Application 162
4.6. Conclusions 164
4.7. Bibliography 165

CHAPTER 5. QUANTITATIVE PHASE–DIGITAL HOLOGRAPHIC MICROSCOPY: A NEW MODALITY FOR LIVE CELL IMAGING 169
Pierre MARQUET, Benjamin RAPPAZ and Nicolas PAVILLON

5.1. Introduction 170
5.2. Cell imaging with quantitative phase DHM 172
5.2.1. The origin and content of the quantitative phase signal 172
5.2.2. Cell counting and classification analysis 174
5.2.3. Exploration of cell movements and dynamics 175
5.2.4. Dry mass, cell growth and cell cycle 175
5.2.5. Cell membrane fluctuations and biomechanical properties 176
5.2.6. Dynamics of absolute cell volume and transmembrane water movements 177
5.3. High-content phenotypic screening based on QP-DHM 179
5.4. Multimodal QP-DHM 182
5.4.1. Multimodal fluorescence QP-DHM 182
5.4.2. Multimodal Raman–QP–DHM 183
5.4.3. Multimodal electrophysiology QP–DHM 186
5.5. Resolving neuronal network activity and visualizing spine dynamics 190
5.5.1. Background 190
5.5.2. Imaging neuronal activity by measuring transmembrane water movements with QP–DHM 193
5.5.3. 3D Visualization of dendritic spine dynamics with quantitative phase tomographic microscopy (QP–TM) 197
5.6. Perspectives 198
5.7. Acknowledgments 201
5.8. Bibliography 201

CHAPTER 6. LONG-WAVE INFRARED DIGITAL HOLOGRAPHY 219
Marc GEORGES
6.1. Introduction 219
6.2. Analog hologram recording in LWIR 221
6.3. Digital hologram recording in LWIR 222
6.3.1. Hardware components 222
6.3.2. Specific features of the LWIR domain 229
6.4. Typical applications of LWIR digital holography 235
6.4.1. Recording holograms of large objects in LWIR and display in visible 235
6.4.2. Reconstruction of images through smoke and flames 237
6.4.3. Large deformations of specular aspheric reflectors 240
6.4.4. Combined holography and thermography for thermomechanical analysis and non-destructive testing 243
6.5. Conclusions: future prospects 246
6.6. Bibliography 247
CHAPTER 7. FULL FIELD HOLOGRAPHIC VIBROMETRY AT ULTIMATE LIMITS 255
Nicolas VERRIER, Michael ATLAN and Michel GROSS

7.1. Introduction 255
7.2. Heterodyne holography 257
7.2.1. Accurate phase shift and holographic detection bandwidth 260
7.2.2. Shot noise holographic detection 264
7.3. Holographic vibrometry 268
7.3.1. Optical signal scattered by a vibrating object 268
7.3.2. Selective detection of the sideband components \(E_m \): sideband holography 270
7.3.3. Sideband holography for large amplitude of vibration 273
7.3.4. Sideband holography with strobe illumination 277
7.3.5. Sideband holography for small amplitude of vibration 280
7.4. Conclusion 290
7.5. Bibliography 290

LIST OF AUTHORS 295
INDEX 297

Order by Fax - using the form below
Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

Product Name: New Techniques in Digital Holography
Web Address: http://www.researchandmarkets.com/reports/3089820/
Office Code: SCDKW38V

Product Format
Please select the product format and quantity you require:

Quantity
Hard Copy (Hard Back): □ USD 128 + USD 29 Shipping/Handling

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title: Mr □ Mrs □ Dr □ Miss □ Ms □ Prof □
First Name: __________________________ Last Name: __________________________
Email Address: * __________________________
Job Title: __________________________
Organisation: __________________________
Address: __________________________
City: __________________________
Postal / Zip Code: __________________________
Country: __________________________
Phone Number: __________________________
Fax Number: __________________________

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB9853083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:
Marketing Code: ____________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World