Super capacitor Materials 2015-2025: Formulations, Forecasts, Roadmap, Companies

Description: This report explains the materials and performance achievements and objectives of the 80 manufacturers of supercapacitors and supercabatteries. It reveals, in easily accessed form, the performance, formulation and morphology of the key materials used and planned for the future. It concerns materials work both by the device manufacturers and by the many third party developers and suppliers across the world. The structure of a supercapacitor and supercabattery is introduced together with the materials and parameters needed.

Particularly focussed on the primary market need for the future - lower cost and higher energy density - the candidate families of material are assess and progress reported and predicted. Notably that means electrode and electrolyte materials. For electrodes that includes graphene, aerogels and chemically-derived carbons. Important for future electrolyte needs are such things as the new neutral aqueous electrolytes permitting low cost current collectors, ionic liquids that now work at low temperatures and new organic solvents that are less toxic and flammable.

For electrodes, the various hierarchical, exohedral and thin film options are compared and all is related to various end points from micro-supercapacitors to structural ones and large ones in electric vehicles, grid and other electrical engineering applications. For example, we forecast the best energy density that will be achieved in volume production in the next ten years and in 15 years from now, the best candidate materials, capacitor structures and electrolytes for achieving this and the value market resulting.

Key players are identified and their plans revealed based on a host of ongoing interviews. This report is a sister report to our supercapacitor report covering company strategies and the road map of new applications and markets for the devices that is enabled by forecasted improvements in performance. Over these, there is a broad master report introducing the whole breadth of the subject. The years of ongoing research carried out for these earlier reports leverages this new report on materials.

Contents:
1. EXECUTIVE SUMMARY AND CONCLUSIONS
 1.1. Comparison with batteries
 1.2. Comparison with electrolyte capacitors
 1.3. Focus on functional materials
 1.4. Too many customers
 1.5. Faster improvement
 1.6. Market for supercapacitors rising faster than Li-ion batteries
 1.7. Options: operating principles
 1.8. What needs improving?
 1.8.1. Replacing Li-ion batteries
 1.8.2. Dramatic benefit from energy density increase
 1.8.3. Example in action
 1.9. Construction and cost structure
 1.10. Choices of material: important parameters to improve
 1.10.1. Carbon is unassailable
 1.10.2. How to improve cost and energy density
 1.10.3. Voltage and area improvement
 1.10.4. Highest power density
 1.10.5. Series resistance
 1.10.6. Time constant
 1.10.7. Leakage current
 1.11. Progress with electrode materials
 1.12. Electrolytes
 1.12.1. Comparison of options
 1.12.2. Higher voltage electrolytes
 1.12.3. Aqueous electrolytes become attractive
 1.12.4. Organic ionic electrolytes
 1.12.5. Acetonitrile concern
1.13. Supercabatters
1.13.1. Graphene a strong focus
1.14. Graphene goes well with the new electrolytes
1.14.1. Other reasons for graphene
1.14.2. Graphene advance in 2015
1.15. Materials maturity and profit
1.16. Market potential 2015-2025
1.17. Hemp pseudo graphene?
1.18. Lessons from the Supercapacitors event California November 2014
1.19. Supercapacitors on the smaller scale
1.20. News in April 2016

2. INTRODUCTION
2.1. Where supercapacitors fit in
2.2. Supercapacitors and supercabattery basics
2.2.1. Basic geometry
2.2.2. Charging
2.2.3. Discharging and cycling
2.2.4. Energy density
2.2.5. Battery-like variants: pseudocapacitors, supercabatteries
2.2.6. Pseudocapacitance
2.2.7. New supercabattery designs
2.3. Supercapacitors and alternatives compared
2.4. Fundamentals
2.5. Laminar biodegradable option
2.6. Structural supercapacitors
2.6.1. Queensland UT supercap car body
2.6.2. Fiber supercapacitors
2.6.3. Stretchable Capacitors
2.6.4. Microcapacitors
2.6.5. Embedding with Flexible Printed Circuits
2.6.6. Electrical component hitches a ride with mechanical support
2.6.7. AMBER activity of the CRANN Institute at Trinity College Dublin
2.7. Electrolyte improvements ahead
2.7.1. Aqueous vs non-aqueous electrolytes
2.7.2. Polycenes or polypyrrole
2.7.3. New ionic liquid electrolytes
2.7.4. Prospect of radically different battery and capacitor shapes
2.8. Equivalent circuits and limitations
2.8.1. Equivalent circuits
2.8.2. Example of fixing the limitations
2.9. Supercapacitor sales have a new driver: safety
2.9.1. Why supercapacitors replace batteries today
2.9.2. Troublesome life of rechargeable batteries
2.9.3. So where are we now?
2.9.4. What next?
2.9.5. Good cell and system design
2.9.6. Faster improvement
2.9.7. Complex electronic controls
2.9.8. The air industry benchmarks badly
2.10. Disruptive supercapacitors now taken more seriously
2.10.1. Lithium-ion batteries still ahead in ten years
2.10.2. Supercapacitors first choice for safety?
2.11. Change of leadership of the global value market?
2.11.1. Maxwell Technologies
2.11.2. Largest orders today: Meidensha
2.12. Battery and fuel cell management with supercapacitors
2.13. Graphene vs other carbon forms in supercapacitors
2.13.1. Exohedral and hierarchical options both set records
2.13.2. Hierarchical with interconnected pores: breakthrough in 2015
2.14. Environmentally friendlier and safer materials
2.15. Printing supercapacitors
2.16. New manufacturing sites in Europe

3. SEPARATORS

4. ELECTROLYTES BY MANUFACTURER
4.1. Introduction
4.2. Toxicity
4.3. Gel electrolytes
4.4. Ionic liquids
4.5. Electrolytes compared by manufacturer.

5. ELECTRODE MATERIALS AND OTHERS
5.1. Introduction
5.2. Electrodes and other materials compared by company
5.3. Materials optimisation
5.3.1. Requirements to beat batteries
5.3.2. Focus on functional materials
5.3.3. Rapid demand increase
5.3.4. What needs improving?
5.3.5. Replacing Li-ion batteries partly or wholly
5.3.6. Dramatic benefit from energy density increase
5.3.7. Materials aspects
5.3.8. Carbon is unassailable
5.3.9. 2D titanium carbide
5.3.10. How to improve cost and energy density
5.3.11. Voltage and area improvement
5.3.12. Materials for highest power density today
5.3.13. Series resistance
5.3.14. Time constant
5.4. Progress with electrode materials
5.5. Graphene
5.5.1. Other reasons for graphene
5.5.2. Self assembling graphene
5.6. Higher voltage electrolytes
5.7. Aqueous electrolytes become attractive
5.8. Organic ionic electrolytes
5.9. Acetonitrile concern
5.10. Supercabattery improvement

6. COMPANY PROFILES
6.1. 2D Carbon Graphene Material Co., Ltd
6.2. Abalonyx, Norway
6.3. Airbus, France
6.4. Aixtron, Germany
6.5. AMO GmbH, Germany
6.6. Asbury Carbon, USA
6.7. AZ Electronics, Luxembourg
6.8. BASF, Germany
6.9. Cambridge Graphene Centre, UK
6.10. Cambridge Graphene Platform, UK
6.11. Carben Semicon Ltd, Russia
6.12. Carbon Solutions, Inc., USA
6.13. Catalyx Nanotech Inc. (CNI), USA
6.14. CRANN, Ireland
6.15. Georgia Tech Research Institute (GTRI), USA
6.16. Grafoid, Canada
6.17. GRAnPH Nanotech, Spain
6.18. Graphene Devices, USA
6.20. Graphensic AB, Sweden
6.21. Harbin Mulan Foreign Economic and Trade Company, China
6.22. HDPlas, USA
6.23. Head, Austria
6.24. HRL Laboratories, USA
6.25. IBM, USA
6.26. iTrix, Japan
6.27. JiangSu GeRui Graphene Venture Capital Co., Ltd.
6.28. Jinan Moxi New Material Technology Co., Ltd
6.29. JSR Micro, Inc. / JM Energy Corp.
6.30. Lockheed Martin, USA
6.31. Massachusetts Institute of Technology (MIT), USA
6.32. Max Planck Institute for Solid State Research, Germany
6.33. Momentive, USA
6.34. Nanjing JCNANO Tech Co., LTD
6.35. Nanjing XFNANO Materials Tech Co., Ltd
6.36. Nanostructured & Amorphous Materials, Inc., USA
6.37. Nokia, Finland
6.38. Pennsylvania State University, USA
6.39. Power Booster, China
6.40. Quantum Materials Corp, India
6.41. Rensselaer Polytechnic Institute (RPI), USA
6.42. Rice University, USA
6.43. Rutgers - The State University of New Jersey, USA
6.44. Samsung Electronics, Korea
6.45. Samsung Techwin, Korea
6.46. SolanPV, USA
6.47. Spirit Aerosystems, USA
6.48. Sungkyunkwan University Advanced Institute of Nano Technology (SAINT), Korea
6.49. Texas Instruments, USA
6.50. Thales, France
6.51. The Sixth Element
6.52. University of California Los Angeles, (UCLA), USA
6.53. University of Manchester, UK
6.54. University of Princeton, USA
6.55. University of Southern California (USC), USA
6.56. University of Surrey UK
6.57. University of Texas at Austin, USA
6.58. University of Wisconsin-Madison, USA

Order by Fax - using the form below
Order by Post - print the order form below and send to
Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct and select the format(s) you require.

Product Name: Super capacitor Materials 2015-2025: Formulations, Forecasts, Roadmap, Companies
Web Address: http://www.researchandmarkets.com/reports/3095155/
Office Code: SC

Product Formats
Please select the product formats and quantity you require:

<table>
<thead>
<tr>
<th>Quantity</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronic (PDF) - 1 - 5 Users:</td>
<td>USD 5083</td>
</tr>
<tr>
<td>Electronic and Hard Copy (PDF) - 1 - 5 Users:</td>
<td>USD 5390 + USD 57 Shipping/Handling</td>
</tr>
<tr>
<td>Electronic (PDF) - 1 - 10 Users:</td>
<td>USD 7628</td>
</tr>
<tr>
<td>Electronic and Hard Copy (PDF) - 1 - 10 Users:</td>
<td>USD 7934 + USD 57 Shipping/Handling</td>
</tr>
</tbody>
</table>

* Shipping/Handling is only charged once per order.
* The price quoted above is only valid for 30 days. Please submit your order within that time frame to avail of this price as all prices are subject to change.

Contact Information
Please enter all the information below in BLOCK CAPITALS

<table>
<thead>
<tr>
<th>Title:</th>
<th>Mr ☐ Mrs ☐ Dr ☐ Miss ☐ Ms ☐ Prof ☐</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Name:</td>
<td>Last Name:</td>
</tr>
<tr>
<td>Email Address: *</td>
<td></td>
</tr>
<tr>
<td>Job Title:</td>
<td></td>
</tr>
<tr>
<td>Organisation:</td>
<td></td>
</tr>
<tr>
<td>Address:</td>
<td></td>
</tr>
<tr>
<td>City:</td>
<td></td>
</tr>
<tr>
<td>Postal / Zip Code:</td>
<td></td>
</tr>
<tr>
<td>Country:</td>
<td></td>
</tr>
<tr>
<td>Phone Number:</td>
<td></td>
</tr>
<tr>
<td>Fax Number:</td>
<td></td>
</tr>
</tbody>
</table>

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: _______________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World