Machine Learning in Python. Essential Techniques for Predictive Analysis

Description: SIMPLE, EFFECTIVE WAY TO ANALYZE DATA AND PREDICT OUTCOMES WITH PYTHON

Machine learning focuses on prediction using what you know to predict what you would like to know based on historical relationships between the two. At its core, it's a mathematical/algorithm-based technology that, until recently, required a deep understanding of math and statistical concepts, and fluency in R and other specialized languages. Machine Learning in Python simplifies machine learning for a broader audience and wider application by focusing on two algorithm families that effectively predict outcomes, and by showing you how to apply them using the popular and accessible Python programming language.

Author Michael Bowles draws from years of machine learning expertise to walk you through the design, construction, and implementation of your own machine learning solutions. The algorithms are explained in simple terms with no complex math, and sample code is provided to help you get started right away. You'll delve deep into the mechanisms behind the constructs, and learn how to select and apply the algorithm that will best solve the problem at hand, whether simple or complex. Detailed examples illustrate the machinery with specific, hackable code, and descriptive coverage of linear regression and ensemble methods helps you understand the fundamental processes at work in machine learning. The methods are effective and well tested, and the results speak for themselves.

Designed specifically for those without a specialized math or statistics background, Machine Learning in Python shows you how to:

- Select the right algorithm for the job
- Learn the mechanisms and prepare the data
- Master core Python machine learning packages
- Build versatile predictive models that work
- Apply trained models in practice for various uses
- Measure model performance for better QC and application
- Use provided sample code to design and build your own model

Contents:

Introduction xxiii

Chapter 1 The Two Essential Algorithms for Making Predictions 1
Why Are These Two Algorithms So Useful? 2
What Are Penalized Regression Methods? 7
What Are Ensemble Methods? 9
How to Decide Which Algorithm to Use 11
The Process Steps for Building a Predictive Model 13
Framing a Machine Learning Problem 15
Feature Extraction and Feature Engineering 17
Determining Performance of a Trained Model 18
Chapter Contents and Dependencies 18
Summary 20

Chapter 2 Understand the Problem by Understanding the Data 23
Performance Measures for Different Types of Problems 88
Simulating Performance of Deployed Models 99
Achieving Harmony Between Model and Data 101
Choosing a Model to Balance Problem Complexity, Model Complexity, and Data Set Size 102
Using Forward Stepwise Regression to Control Overfitting 103
Evaluating and Understanding Your Predictive Model 108
Control Overfitting by Penalizing Regression
Coefficients: Ridge Regression 110
Summary 119
Chapter 4 Penalized Linear Regression 121
Why Penalized Linear Regression Methods Are So Useful 122
Extremely Fast Coefficient Estimation 122
Variable Importance Information 122
Extremely Fast Evaluation When Deployed 123
Reliable Performance 123
Sparse Solutions 123
Problem May Require Linear Model 124
When to Use Ensemble Methods 124
Penalized Linear Regression: Regulating Linear Regression for Optimum Performance 124
Training Linear Models: Minimizing Errors and More 126
Adding a Coefficient Penalty to the OLS Formulation 127
Other Useful Coefficient Penalties: Manhattan and ElasticNet 128
Why Lasso Penalty Leads to Sparse Coefficient Vectors 129
ElasticNet Penalty Includes Both Lasso and Ridge 131
Solving the Penalized Linear Regression Problem 132
Understanding Least Angle Regression and Its Relationship to Forward Stepwise Regression 132
How LARS Generates Hundreds of Models of Varying Complexity 136
Choosing the Best Model from The Hundreds LARS Generates 139
Using Glmnet: Very Fast and Very General 144
Comparison of the Mechanics of Glmnet and LARS Algorithms 145
Initializing and Iterating the Glmnet Algorithm 146
Extensions to Linear Regression with Numeric Input 151
Solving Classification Problems with Penalized Regression 151
Working with Classification Problems Having More Than Two Outcomes 155
Understanding Basis Expansion: Using Linear Methods on Nonlinear Problems 156
Incorporating Non–Numeric Attributes into Linear Methods 158
Summary 163
Chapter 5 Building Predictive Models Using Penalized Linear Methods 165
Python Packages for Penalized Linear Regression 166
Multivariable Regression: Predicting Wine Taste 167
Building and Testing a Model to Predict Wine Taste 168
Training on the Whole Data Set before Deployment 172
Basis Expansion: Improving Performance by Creating New Variables from Old Ones 178
Binary Classification: Using Penalized Linear Regression to Detect Unexploded Mines 181
Build a Rocks versus Mines Classifier for Deployment 191
Multiclass Classification: Classifying Crime Scene Glass Samples 204
Summary 209
Chapter 6 Ensemble Methods 211
Binary Decision Trees 212
How a Binary Decision Tree Generates Predictions 213
How to Train a Binary Decision Tree 214
Tree Training Equals Split Point Selection 218
How Split Point Selection Affects Predictions 218
Algorithm for Selecting Split Points 219
Multivariable Tree Training Which Attribute to Split? 219
Recursive Splitting for More Tree Depth 220
Overfitting Binary Trees 221
Measuring Overfit with Binary Trees 221
Balancing Binary Tree Complexity for Best Performance 222
Modifications for Classification and Categorical Features 225
Bootstrap Aggregation: Bagging 226
How Does the Bagging Algorithm Work? 226
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit
http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

Product Name: Machine Learning in Python. Essential Techniques for Predictive Analysis
Web Address: http://www.researchandmarkets.com/reports/3110077/
Office Code: SCH3JXTF

Product Format
Please select the product format and quantity you require:

Quantity

Hard Copy
(Paper back): □ USD 99 + USD 29 Shipping/Handling

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title: Mr □ Mrs □ Dr □ Miss □ Ms □ Prof □
First Name: ____________________________ Last Name: ____________________________
Email Address: * ____________________________
Job Title: ____________________________
Organisation: ____________________________
Address: ____________________________
City: ____________________________
Postal / Zip Code: ____________________________
Country: ____________________________
Phone Number: ____________________________
Fax Number: ____________________________

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:

Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:

- **Account number**: 833 130 83
- **Sort code**: 98-53-30
- **Swift code**: ULSBIE2D
- **IBAN number**: IE78ULSB98533083313083
- **Bank Address**: Ulster Bank, 27-35 Main Street, Blackrock, Co. Dublin, Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: ______________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:

(646) 607-1907 or (646) 964-6609 - From USA

+353-1-481-1716 or +353-1-653-1571 - From Rest of World