The Sustainable Laboratory Handbook. Design, Equipment, and Operation

Description: The first comprehensive guide to modern laboratory planning in ten years to address both construction and operating aspects.

Many of the 30 authors are affiliated with the European Association for Sustainable Laboratory Technologies (EGNATON), which has also endorsed this ready reference. This expert team covers the entire lifecycle of a laboratory facility, starting with the site layout and the planning of the building, followed by the planning of such areas as housing for laboratory animals, clean rooms and production facilities. The next section of the book deals with the installation of laboratory equipment, including storage and emergency facilities, while the final parts address safety and sustainability standards applicable to laboratories, as well as facility management and optimization during normal laboratory operation.

The relevant norms and standards are cited throughout, and examples from recent construction sites are also presented. Hundreds of photographs and drawings, many in full color, provide visual examples of the design and building concepts. As a result, readers will learn how to construct and maintain efficient and long-serving laboratory spaces with a minimum of maintenance costs and a maximum of safety.

An invaluable, practical guide for planners, builders and managers of chemical, biological and medical research laboratories of any size.

Contents:

List of Contributors XXIII
Preface XXVII

Part I Laboratory Building and Laboratory Equipment

Subjects of Laboratory Design of Building and Equipment 1
Egbert Dittrich

1 Introduction: Laboratory Typologies 3
Christoph Heinekamp
1.1 Purpose 4
1.2 Science Direction 5
1.3 Fields of Activities 6
1.4 Working Methods 8
1.5 Physical Structure 8
1.6 Conclusion 12

2 Requirements and Determination of Requirements 13
Christoph Heinekamp
2.1 Area Misuse through Wrong Grids 16

3 Laboratory Concept and Workstations 21
Christoph Heinekamp

4 Determination of User Needs
Goal-Oriented Communication between Planners and Users as a Basis for Sustainable Building 31
Berthold Schiemenz and Stefan Krause
4.1 Work Areas 33
4.2 Work Flows and Room Groups 34

5 Corporate Architecture Architecture of Knowledge 37
 Tobias Ell

 5.1 Image–The Laboratory as a Brand 38
 5.2 Innovation–The Laboratory as the Origin of Knowledge 39
 5.3 Excellence: The Laboratory as a Magnet for High Potentials 40

6 Scheduler Tasks in the Planning Process 43
 Markus Hammes

 6.1 Project Preparation 44
 6.2 Integral Planning Teams 44
 6.3 User Participation 45
 6.4 Planning Process 45
 6.5 Execution Phase 46
 6.6 Commissioning 46
 6.7 Conclusion 47
 6.8 Best Practice 47

7 Space for Communication in the Laboratory Building 55
 Markus Hammes

 7.1 Definition of Terms 55
 7.2 Historical Development 56
 7.3 Development in the Modern Age–Why and When Were These Ideal Conceptions Lost? 57
 7.4 Conclusion for Future Concepts 61

8 Fire Precautions 63
 Markus Bauch

 8.1 Preventive Fire Protection 63
 8.2 Fire Protection Solution for Laboratory Buildings 69
 8.3 Fire Protection Solutions for Laboratory Buildings Examples 70

Part II Layout of Technical Building Trades 77
 Egbert Dittrich

 9 Development in Terms of Building Technology and Requirements of Technical Building Equipment 81
 Hermann Zeltner

 9.1 Field of Research 82
 9.2 Required Flexibility of Laboratory Areas 83
 9.3 Number of Floors, Height of the Floor, and DevelopmentExtent of the Laboratory Area (Laboratory
Landscape 85
9.4 Plumbing Services 86
9.5 Electrical Installation 88
9.6 Ventilation 89
9.7 Determination and Optimization of the Air Changes Quantities and Definition of Air Systems Required 90
9.8 Creation of an Energy–Optimized Duct System 93
10 Ventilation and Air Conditioning Technology 95
Roland Rydzewski
10.1 Introduction 95
10.2 Air Supply of Laboratory Rooms 96
10.3 Air–Flow Routing in the Room 99
10.4 Numerical Flow Simulation (Computational Fluid Dynamics (CFD)) 102
10.5 Energy–Efficient Systems Engineering 110
10.6 Installation Concepts for Laboratory Buildings from the Point of View of Ventilation and Air–Conditioning Planning 114
11 Electrical Installations 119
Oliver Engel
11.1 Power Supply 119
11.2 Lightings 126
11.3 Data Networks 127
11.4 Central Building Control System 129
12 Service Systems via Ceiling 133
Hansjürg Lüdi
12.1 General Discussion 133
12.2 Flexible Laboratory Room Sizes/Configuration 134
12.3 Major Differentiating Components 139
13 Laboratory Logistics 145
Ines Merten
13.1 Classic Systems 145
13.2 Centralization and Implementation of Logistics Systems in the Building 146
13.3 Consignment and Automatic Storage Facilities 148
13.4 Solvents Supply and Disposal Systems 150
13.5 LaboratoryWork 2030 Objective? 152
13.6 From Small Areas to the Big Picture 153
25.3 Connection Points 319
25.4 Impurities 319
25.5 Supply Systems: Central Building Supply/Local Supply and Laboratory Supply 320
25.6 Central Building Supply (CBS) 323
25.7 Pipe Networks and Zone Shut-Off Valves with Filter 324
25.8 Fitting Supports and Tapping Spots 325
25.9 Local Laboratory Gas Supply 327
25.10 Surfaces Coatings 327
25.11 Inspections 328
25.12 Operation Start-Up and Instruction of the Operating Staff 328

26 Emergency Devices 333

26.1 General 333
26.2 Body Showers 334
26.3 Eye-Washer 334
26.4 Emergency Shower Combinations 334
26.5 Hygiene 335
26.6 Testing and Maintenance 335
26.7 Complementary Products 335

Part IV Sustainability and Laboratory Operation 339

27 Sustainability Certification Assessment Criteria and Suggestions 341

27.1 Certification Systems 342
27.2 Individual Strategies to Implement Sustainability 345

28 Reducing Laboratory Energy Use with Demand-Based Control 351

28.1 Reducing Fume Cupboard Flows 351
28.2 Reduce Thermal Load Flow Drivers 352
28.3 Vary and Reduce Average ACH Rate Using Demand-Based Control 353
28.4 A New Sensing Approach Provides a Cost-Effective Solution 354
28.5 Demand-Based Control (DBC) Improves Beam Use 355
28.6 A Few Comments on New Lab Ventilation Standards and Guidelines 356
28.7 Case Studies 357
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>28.8 Capital Cost Reduction Impacts of Demand–Based Control</td>
<td>361</td>
</tr>
<tr>
<td>28.9 Conclusions on Lab Energy Efficient Control Approaches</td>
<td>362</td>
</tr>
<tr>
<td>References</td>
<td>362</td>
</tr>
<tr>
<td>29 Lab Ventilation and Energy Consumption</td>
<td>363</td>
</tr>
<tr>
<td>Peter Dockx</td>
<td></td>
</tr>
<tr>
<td>29.1 Introduction</td>
<td>363</td>
</tr>
<tr>
<td>29.2 Step 1: Minimize Demand!</td>
<td>365</td>
</tr>
<tr>
<td>29.3 Step 2: Design Energy Friendly Systems</td>
<td>369</td>
</tr>
<tr>
<td>29.4 Step 3: Install and Proper Commission the Installation</td>
<td>374</td>
</tr>
<tr>
<td>29.5 Step 4: Maintain the Installation and Monitor</td>
<td>374</td>
</tr>
<tr>
<td>29.6 Step 5: Use of Alternative Energy</td>
<td>375</td>
</tr>
<tr>
<td>29.7 Conclusion</td>
<td>378</td>
</tr>
<tr>
<td>30 Consequences of the 2009 Energy–Saving Ordinance for Laboratories</td>
<td>379</td>
</tr>
<tr>
<td>Fritz Runge and Jörg Petri</td>
<td></td>
</tr>
<tr>
<td>30.1 The Task Force</td>
<td>379</td>
</tr>
<tr>
<td>30.2 Energy Certificates for Laboratory Buildings</td>
<td>380</td>
</tr>
<tr>
<td>30.3 Special Energy Characteristics of Laboratory Buildings</td>
<td>385</td>
</tr>
<tr>
<td>30.4 Reference Values for the Energy Consumption of Laboratory Buildings</td>
<td>386</td>
</tr>
<tr>
<td>30.5 Energy Consumption Values</td>
<td>387</td>
</tr>
<tr>
<td>30.6 Reference Quantities</td>
<td>387</td>
</tr>
<tr>
<td>30.7 Groups with Homogeneous Characteristics</td>
<td>391</td>
</tr>
<tr>
<td>30.8 Conclusions from the Results of the Investigations</td>
<td>392</td>
</tr>
<tr>
<td>30.9 Example for the Issue of a Consumption–Based Energy Certificate for a Laboratory Building</td>
<td>394</td>
</tr>
<tr>
<td>30.10 Summary</td>
<td>396</td>
</tr>
<tr>
<td>Part V Standards and Test Regulations</td>
<td>399</td>
</tr>
<tr>
<td>Egbert Dittrich</td>
<td></td>
</tr>
<tr>
<td>31 Legislation and Standards</td>
<td>401</td>
</tr>
<tr>
<td>Burkhard Winter</td>
<td></td>
</tr>
<tr>
<td>31.1 Introduction</td>
<td>401</td>
</tr>
<tr>
<td>31.2 Laboratory Planning and Building</td>
<td>402</td>
</tr>
<tr>
<td>31.3 Regulations for Labor Safety and Occupational Health</td>
<td>406</td>
</tr>
<tr>
<td>References</td>
<td>410</td>
</tr>
<tr>
<td>32 Examination, Requirements, and Handling of Fume Cupboards</td>
<td>413</td>
</tr>
<tr>
<td>Bernhard Mohr and Bernd Schubert</td>
<td></td>
</tr>
</tbody>
</table>
34.12 Testing Equipment Registry (Sample) 486
34.13 Screening Examinations for Laboratory Activities (Selection) 488
34.14 Skin Protection Plan (Sample) 492

References 495

Part VII Laboratory Operation 497
Helmut Martens

35 Facility Management in the Life Cycle of Laboratory Buildings 499
Andreas Kühne and Ali-Yetkin Özcan
35.1 Self-Understanding and Background 499
35.2 Process Optimization 500
35.3 FM in the Life Cycle of a Laboratory Building 500
35.4 Concept Phase Laboratory Building 502
35.5 Construction Phase 504
35.6 Use Phase 504
35.7 Revitalization Phase 505
35.8 Deconstructing Phase 507
35.9 Benefits of FM 507

36 Laboratory Optimization 509
Helmut Martens
36.1 The Procedure 510
36.2 The Actual Recording 511
36.3 Determination of the Optimization Potential 512
36.4 Planning and Implementation 513
36.5 Permanent Need for Optimization 514
36.6 An Example 515
36.7 Utilization of Staff 516
36.8 Utilization of Equipment 517
36.9 Employee Retention, Employee Retention Time, Device Runtime 518
36.10 Another Example 518
36.11 Cost 518
36.12 Logistics 519
36.13 Quality 520
36.14 Customer Satisfaction and Customer Loyalty 520
36.15 Laboratory Indicators 521

37 Quality Management 523
Helmut Martens

37.1 Quality Control 523
37.2 Quality Assurance 523
37.3 Quality Management 523
37.4 Creation and Maintenance of a Quality Management System 524
37.5 The Purpose of Systematic Quality Management 525
37.6 Integrated Management Systems 525
37.7 Certification or Accreditation 526
37.8 International Recognition of Accreditation 527
37.9 Central Functions of Quality Management 527
37.10 Responsibilities of the Quality Manager in Practice 529
37.11 Implementation of a Quality Management System in the Laboratory 529
37.12 Documents 530
37.13 Expiration of Accreditation Project 532

38 Data 535
Helmut Martens

38.1 Data Systems 536
38.2 Data Systems at the Corporate Management Level 536
38.3 LIMS 537
38.4 LIMS Selection and Procurement 537
38.5 Requirements for a Specification 540
38.6 Selection of Suitable Suppliers 541
38.7 Data Privacy and Data Security 542
38.8 Risk Assessment 543
38.9 Safety Management 544
38.10 System Documentation 546
38.11 Emergency Plan 547

Index 549

Ordering:
Order Online - http://www.researchandmarkets.com/reports/3110183/
Order by Fax - using the form below
Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit

http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

Product Name: The Sustainable Laboratory Handbook. Design, Equipment, and Operation
Web Address: http://www.researchandmarkets.com/reports/3110183/
Office Code: SC6I718S

Product Format
Please select the product format and quantity you require:

| Hardware (Hard Back) | USD 164 + USD 29 Shipping/Handling |

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title: [] Mr [] Mrs [] Dr [] Miss [] Ms [] Prof
First Name: ____________________________ Last Name: ____________________________
Email Address: * ____________________________
Job Title: ____________________________
Organisation: ____________________________
Address: ____________________________
City: ____________________________
Postal / Zip Code: ____________________________
Country: ____________________________
Phone Number: ____________________________
Fax Number: ____________________________

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Market ing Code:

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World