Arene Chemistry. Reaction Mechanisms and Methods for Aromatic Compounds

Description: Arenes, or aromatic compounds, have tremendous importance in industrial chemical applications used across such diverse industries as pharmaceuticals, dyes, and polymers. Given the utility of aromatic reactions, there is real need for a book focusing on mechanisms and strategies for aromatic reactions.

Stepping up to meet that demand, Arene Chemistry: Reaction Mechanisms and Methods for Aromatic Compounds surveys the main methods used for preparing these compounds and their transformations. Organized to enable students and synthetic chemists to understand and expand on aromatic reactions, the book helps those readers apply aromatic reactions in a practical context by designing syntheses. The book has 10 parts, divided into 32 chapters organized according to the types of mechanisms rather than by the conditions under which a reaction is executed. The topics covered include electrophilic aromatic substitution, nucleophilic aromatic substitution, aryne chemistry, reduction, oxidation, and de-aromatization reactions, aromatic rearrangement reactions, transition metal mediated coupling, C-H bond functionalization, directed metatation and photochemical reactions, and biotransformations.

Featuring the perspectives and expertise of leading researchers from around the world, Arene Chemistry offers a valuable reference and resource for the organic chemistry community.

Key benefits include:

- A thorough and accessible mechanistic explanation of aromatic reactions of arene compounds
- Connection of reactivity and methodology with mechanism, at the interface of synthesis and physical organic chemistry
- Essential information about techniques used to determine reaction mechanisms
- Synthetic applications

Contents:

LIST OF CONTRIBUTORS xxi

PREFACE xxv

PART I ELECTROPHILIC AROMATIC SUBSTITUTION 1

1 Electrophilic Aromatic Substitution: Mechanism 3
Douglas A. Klumpp
1.1 Introduction, 3
1.2 General Aspects, 4
1.3 Electrophiles, 4
1.4 Arene Nucleophiles, 12
1.5 Complex Intermediates, 17
1.6 Complex or Wheland Intermediates, 22
1.7 Summary and Outlook, 27

Abbreviations, 27
References, 28

2 Friedel Crafts Alkylation of Arenes in Total Synthesis 33
Gonzalo Blay, Marc Montesinos Magraner, and José R. Pedro

2.1 Introduction, 33

2.2 Total Synthesis Involving Intermolecular FC Alkylations, 34

2.2.1 Synthesis of Coenzyme Q10, 34

2.2.2 Total Synthesis of (±) Brasiliquinone B, 35

2.2.3 Synthesis of () Podophyllotoxin, 35

2.2.4 Synthesis of Puupehenol and Related Compounds, 36

2.2.5 Synthesis of () Talaumidin, 36

2.2.6 Total Synthesis of (±) Schefferine, 37

2.3 Total Synthesis Involving Intramolecular FC Alkylations, 37

2.3.1 C C Bond Formation Leading to Homocyclic Rings, 37

2.3.2 C C Bond Formation Leading to Oxygen Containing Rings, 43

2.3.3 C C Bond Formation Leading to Nitrogen Containing Rings, 44

2.4 Total Synthesis Through Tandem and Cascade Processes Involving FC Reactions, 46

2.4.1 C C Bond Formation Leading to Homocyclic Rings, 46

2.4.2 C C Bond Formation Leading to Oxygen Containing Rings, 49

2.4.3 C C Bond Formation Leading to Nitrogen Containing Rings, 52

2.5 Total Synthesis Involving ipso FC Reactions, 54

2.5.1 Synthesis of (S) () Xylopinine, 54

2.5.2 Synthesis of Garcibracteatone, 55

2.6 Summary and Outlook, 56

2.7 Acknowledgment, 56

Abbreviations, 56

References, 57

3 Catalytic Friedel Crafts Acylation Reactions 59
Giovanni Sartori, Raimondo Maggi, and Veronica Santacroce

3.1 Introduction and Historical Background, 59

3.2 Catalytic Homogeneous Acylations, 60

3.2.1 Metal Halides, 60

3.2.2 Perfluoroalkanoic Acids, Perfluorosulfonic Acids, and Their (Metal) Derivatives, 62

3.2.3 Miscellaneous, 63
3.3 Catalytic Heterogeneous Acylations, 64
3.3.1 Zeolites, 64
3.3.2 Clays, 69
3.3.3 Metal Oxides, 70
3.3.4 Acid Treated Metal Oxides, 70
3.3.5 Heteropoly Acids (HPAs), 71
3.3.6 Nafion, 72
3.3.7 Miscellaneous, 73
3.4 Direct Phenol Acylation, 73
3.5 Summary and Outlook, 77
Abbreviations, 78
References, 78

4 The Use of Quantum Chemistry for Mechanistic Analyses of SEAr Reactions 83
Tore Brinck and Magnus Liljenberg
4.1 Introduction, 83
4.1.1 Historical Overview of Early Quantum Chemistry Work, 83
4.1.2 Current Mechanistic Understanding Based on Kinetic and Spectroscopic Studies, 85
4.2 The SEAr Mechanism: Quantum Chemical Characterization in Gas Phase and Solution, 87
4.2.1 Nitration and Nitrosation, 87
4.2.2 Halogenation, 93
4.2.3 Sulfonylation, 96
4.2.4 Friedel Crafts Alkylations and Acylations, 96
4.3 Prediction of Relative Reactivity and Regioselectivity Based on Quantum Chemical Descriptors, 97
4.4 Quantum Chemical Reactivity Prediction Based on Modeling of Transition States and Intermediates, 100
4.4.1 Transition State Modeling, 100
4.4.2 The Reaction Intermediate or Sigma Complex Approach, 101
4.5 Summary and Conclusions, 102
Abbreviations, 103
References, 103

5 Catalytic Enantioselective Electrophilic Aromatic Substitutions 107
Marco Bandini
5.1 Introduction and Historical Background, 107
12.5.5 Aryne Annulation, 325

12.6 Transition Metal Catalyzed Reactions of Arynes, 327
12.6.1 Cyclotrimerization of Arynes, 327
12.6.2 Cocyclization of Arynes with Alkynes, 327
12.6.3 Cocyclization of Arynes with Alkenes, 327
12.6.4 Cocyclization of Arynes, Alkenes, and Alkynes, 329
12.6.5 Intermolecular Carbopalladation of Arynes, 329
12.6.6 Catalytic Insertion Reactions of Arynes into Bonds, 330

12.7 Conclusion, 332

Abbreviations, 332

References, 333

PART IV REDUCTION, OXIDATION, AND DEAROMATIZATION REACTIONS 337

13 Reduction/Hydrogenation of Aromatic Rings 339
Francisco Foubelo and Miguel Yus

13.1 Introduction, 339
13.2 The Birch Reaction, 339
13.2.1 Dissolving Metals, 340
13.2.2 Enzymatic Reactions, 344
13.3 Metal Catalyzed Hydrogenations, 345
13.3.1 Homogeneous Conditions, 345
13.3.2 Heterogeneous Conditions, 351
13.4 Electrochemical Reductions, 357
13.5 Other Methodologies, 359
13.6 Summary and Outlook, 361

Abbreviations, 361

References, 362

14 Selective Oxidation of Aromatic Rings 365
Oxana A. Kholdeeva

14.1 Introduction, 365
14.2 Mechanistic Principles, 367
14.2.1 Autoxidation, 367
14.2.2 Spin Forbidden Reactions with Triplet Oxygen, 369
14.2.3 Radical Hydroxylation (Addition Elimination), 370
17.3.1 Synthesis of Substituted Benzenes, 464
17.3.2 Synthesis of Substituted Phenanthrenes, 466
17.3.3 Synthesis of Complex Naphthoquinones and Anthraquinones, 466
17.3.4 Applications to the Synthesis of Biologically Active Products, 470
17.4 Cyclotrimerization for the Synthesis of Aromatic Compounds by Metathetic Processes, 470
17.5 Strategies for the Synthesis of Aromatic Carbocycles Fused to Heterocycles by the RCM Reaction, 472
17.5.1 Alkene RCM for the Synthesis of Benzene Rings in Indoles, Carbazoles, Benzo Fused Pyridines and Pyridones, and Benzo Fused Imidazoles, 472
17.5.2 Enyne RCM for the Synthesis of Benzene Rings in Tetrahydroisoquinolines, Annulated 1,2 Oxaza and 1,2 Bisazacycles, and Indoles, 479
17.6 Future Challenges, 481
17.7 Conclusions, 481
Abbreviations, 482
References, 482

18 Aromatic Rearrangements in which the Migrating Group Migrates to the Aromatic Nucleus: An Overview
Timothy J. Snape
18.1 Introduction, 485
18.2 Mechanisms by Classification, 486
18.2.1 Intramolecular Reactions: Nucleophilic Aromatic Substitution, 486
18.2.2 Intramolecular: Sigmatropic Rearrangements, 494
18.2.3 Intermolecular Rearrangements, 500
18.3 Summary and Outlook, 508
Abbreviations, 508
References, 508

PART VI TRANSITION METAL MEDIATED COUPLING 511

19 Transition Metal Catalyzed Carbon Carbon Cross Coupling
Anny Jutand and Guillaume Lefèvre
19.1 Introduction, 513
19.2 The Mizoroki Heck Reaction, 513
19.2.1 General Considerations and Mechanisms, 513
19.2.2 Scope of the Reaction, 520
19.2.3 Synthetic Application, 523
19.3 Cross Coupling of Aryl Halides with Anionic C Nucleophiles, 523
19.3.1 The Kumada Reactions: Nickel Catalyzed Cross Coupling with Grignard Reagents, 523
19.3.2 Palladium Catalyzed Cross Coupling with Grignard Reagents, 524
19.3.3 The Negishi Reaction: Palladium Catalyzed Cross Coupling with Organozinc Reagents, 525
19.3.4 Palladium Catalyzed Cross Coupling with Organolithium Reagents, 525
19.3.5 Mechanism of Palladium Catalyzed Cross Couplings with Rm (m = Li, MgY, ZnY), 526
19.3.6 Nickel and Palladium Catalyzed Arylation of Ketone, Ester, and Amide Enolates, 528
19.4 The Sonogashira Reaction, 530
19.4.1 General Considerations and Mechanism, 530
19.4.2 Synthetic Applications, 531
19.5 The Stille Reaction, 532
19.5.1 General Considerations and Mechanism, 532
19.5.2 Synthetic Application, 533
19.6 The Suzuki Miyaura Reaction, 534
19.6.1 General Considerations and Mechanism, 534
19.6.2 Synthetic Application, 539
19.7 The Hiyama Reaction, 539
19.7.1 General Considerations and Mechanism, 539
19.7.2 Synthetic Applications, 541
19.8 Summary and Outlook, 541
Abbreviations, 541
References, 541

20 Transition Metal Mediated Carbon Heteroatom Cross Coupling (C N, C O, C S, C Se, C Te, C P, C As, C Sb, and C B Bond Forming Reactions): An Overview 547
Masanam Kannan, Mani Sengoden, and Tharmalingam Punniyamurthy
20.1 Introduction, 547
20.2 C N Cross Coupling, 550
20.2.1 Palladium Catalyzed Reactions, 550
20.2.2 Copper Catalyzed Reactions, 555
20.2.3 Other Transition Metal Catalyzed Reactions, 559
20.2.4 Synthetic Applications, 560
20.3 C O Cross Coupling, 561
20.3.1 Reactions with Aromatic Alcohols, 561
20.3.2 Reactions with Aliphatic Alcohols, 563
21.5.1 Intramolecular Hydroarylation of Alkynes, 608
21.5.2 Cyclization via Transition Metal Vinylidenes, 610
21.6 Summary and Outlook, 612
References, 612

22 Ar–C Bond Formation by Aromatic Carbon–Carbon ipso Substitution Reaction 615
Maurizio Fagnoni and Sergio M. Bonesi
22.1 Introduction, 615
22.2 Formation of Ar–C(sp3) Bonds, 616
22.2.1 Ni Catalyzed Reactions, 616
22.2.2 Rh Catalyzed Reactions, 617
22.2.3 Pd Catalyzed Reactions, 619
22.3 Formation of Ar–C(sp2) Bonds, 620
22.3.1 Synthesis of Aryl Ketones and Amidines, 620
22.3.2 Formation of Ar–Vinyl Bonds, 620
22.3.3 Formation of Ar–Ar Bonds, 628
22.3.4 Formation of Benzocondensed Derivatives, 636
22.4 Formation of Ar–C(sp) Bonds, 638
22.5 Summary and Outlook, 639
Abbreviations, 639
References, 640

PART VII C–H FUNCTIONALIZATION 645
23 Chelate-Assisted Arene C–H Bond Functionalization 647
Marion H. Emmert and Christopher J. Legacy
23.1 Introduction, 647
23.1.1 Mechanisms of Chelate-Assisted C–H Bond Functionalization and Activation, 648
23.1.2 Weakly and Strongly Coordinating Directing Groups, 651
23.1.3 Common Directing Groups, 651
23.1.4 Transformable and In Situ Generated Directing Groups, 652
23.2 Carbon–Carbon (C–C) Bond Formations, 654
23.2.1 C–Caryl Bond Formations, 654
23.2.2 C–CAlkenyl Bond Formations, 655
23.2.3 C–CAlkyl Bond Formations, 656
23.2.4 C—C acyl Bond Formations, 657
23.2.5 C—CN Bond Formations, 658
23.2.6 C—CF3 Bond Formations, 659
23.3 Carbon—Heteroatom (C—X) Bond Formations, 660
23.3.1 C—B Bond Formations, 660
23.3.2 C—Si Bond Formations, 661
23.3.3 C—O Bond Formations, 662
23.3.4 C—N Bond Formations, 662
23.3.5 C—P Bond Formations, 664
23.3.6 C—S Bond Formations, 665
23.3.7 C—Halogen Bond Formations, 666
23.3.8 C—D Bond Formations, 667
23.4 Stereoselective C—H Functionalizations, 668
Abbreviations, 669
References, 669

24 Reactivity and Selectivity in Transition Metal Catalyzed, Nondirected Arene Functionalizations 675
Dipannita Kalyani and Elodie E. Marlier
24.1 Introduction, 675
24.2 Arylation, 676
24.2.1 Direct Arylations, 677
24.2.2 Cross Dehydrogenative Arylations, 684
24.3 Alkenylation, 693
24.4 Alkylation, 699
24.5 Carboxylation, 701
24.6 Oxygenation, 701
24.7 Thiolation, 704
24.8 Amination, 706
24.9 Miscellaneous, 708
24.9.1 Halogenation, 708
24.9.2 Silylation, 708
24.9.3 Borylation, 709
24.10 Summary and Outlook, 710
26.7 Lateral Lithiation, 761
26.8 Analytical Methods, 762
26.8.1 Quantitative Determination of Organolithiums, 762
26.8.2 Qualitative Determination of Organolithiums, 763
26.8.3 Crystallography, 763
26.8.4 NMR Spectroscopy, 765
26.9 Synthetic Applications, 765
26.9.1 DoM and C C Cross Coupling, 765
26.9.2 DoM, DreM, and Anionic Fries Rearrangement, 766
26.9.3 Industrial Scale Up of Ortho Metalation Reactions, 768
26.9.4 Lateral Lithiation, 768
26.9.5 Superbase Metalation, 769
26.10 Conclusion, 770
Abbreviations, 771
References, 771

27 Deprotonative Metalation Using Alkali Metal Nonalkali Metal Combinations 777
Floris Chevallier, Florence Mongin, Ryo Takita, and Masanobu Uchiyama
27.1 Introduction, 777
27.2 Preparation of the Bimetallic Combinations and their Structural Features, 778
27.2.1 Preparation of Alkali Metal Nonalkali Metal Basic Combinations, 778
27.2.2 Ate Compounds, 778
27.2.3 Salt Activated Compounds, 779
27.2.4 Contacted and Solvent Separated Ion Pairs, 779
27.3 Behavior of Alkali Metal Nonalkali Metal Combinations, 779
27.3.1 One Electron and Two Electron Transfers, 779
27.3.2 Base and Nucleophile Ligand Transfers, 780
27.4 Mechanistic Studies on the Deprotometalation Using Alkali Metal Nonalkali Metal Combinations, 780
27.4.1 Deprotometalation Using Alkali Metal Amidozincate Complexes, 780
27.4.2 Deprotometalation Using Alkali Metal Amidoaluminate Complexes, 783
27.4.3 Deprotometalation Using Alkali Metal Amidocuprate Complexes, 786
27.4.4 Deprotometalation Using Alkali Metal Amidocadmate Complexes, 789
27.5 Scope and Applications of the Deprotometalation, 790
27.5.1 Using Lithium or Sodium Magnesium Mixed Metal Bases, 790
27.5.2 Using Lithium Aluminum Mixed Metal Bases, 793
27.5.3 Using Lithium, Sodium, or Magnesium Manganese Mixed Metal Bases, 795
27.5.4 Using Lithium, Sodium, or Magnesium Iron Mixed Metal Bases, 798
27.5.5 Using Lithium Cobalt Mixed Metal Bases, 799
27.5.6 Using Lithium Copper Mixed Metal Bases, 799
27.5.7 Using Lithium, Sodium, or Magnesium Zinc Mixed Metal Bases, 799
27.5.8 Using Lithium or Magnesium Zirconium Mixed Metal Bases, 804
27.5.9 Using Lithium Cadmium Mixed Metal Bases, 804
27.5.10 Using Lithium or Magnesium Lanthanum Mixed Metal Bases, 805
27.6 Conclusion and Perspectives, 807
Acknowledgments, 807
Abbreviations, 807
References, 807

28 The Halogen/Metal Interconversion and Related Processes (M = Li, Mg) 813
Armen Panossian and Frédéric R. Leroux
28.1 Introduction, 813
28.2 Generalities, 814
28.2.1 Monometallic Organolithium Reagents, 814
28.2.2 Monometallic Organomagnesium Reagents, 814
28.2.3 Bimetallic Organolithium/Magnesium Reagents, 814
28.3 Mechanism of the Halogen/Metal Interconversion, 815
28.3.1 Reactivity, 815
28.3.2 Mechanism, 816
28.4 Halogen Migration on Aromatic Compounds, 817
28.5 Selective Synthesis via Halogen/Metal Interconversion, 818
28.5.1 Chemo and Regioselectivity of Halogen/Metal Interconversions, 818
28.5.2 Stereoselectivity of Halogen/Metal Interconversions, 821
28.6 The Sulfoxide/Metal and Phosphorus/Metal Interconversions, 822
28.6.1 The Sulfoxide/Metal Interconversion, 822
28.6.2 The Phosphorus/Metal Interconversion, 826
28.7 Aryl Aryl Coupling Through Halogen/Metal Interconversion, 827
31.1 Introduction, 889
31.2 Mechanistic Aspects, 889
31.2.1 General Scheme, 889
31.2.2 Experimental Evidence: Steady State Photolysis, 890
31.2.3 Experimental Evidence: Time Resolved Studies, 891
31.2.4 Experimental Evidence: Spin Chemistry Techniques, 894
31.2.5 Theoretical Studies, 894
31.3 Scope of the Reaction, 894
31.3.1 Esters, 894
31.3.2 Amides, 895
31.3.3 Other, 895
31.4 (Micro)Heterogeneous Systems as Reaction Media, 897
31.4.1 Cyclodextrins, 897
31.4.2 Micelles, 897
31.4.3 Zeolites, 897
31.4.4 Proteins, 897
31.4.5 Other Organized Media, 897
31.5 Applications in Organic Synthesis, 900
31.5.1 Drugs, 902
31.5.2 Agrochemicals, 902
31.5.3 Polymers, 904
31.7 Summary and Outlook, 905
Abbreviations, 906
References, 906
PART X BIOTRANSFORMATIONS 913
32 Biotransformations of Arenes: An Overview 915
Simon E. Lewis
32.1 Introduction, 915
32.2 Dearomatizing Arene Dihydroxylation, 915
32.3 Dearomatizing Arene Epoxidation, 918
32.4 Arene Alkylation (Biocatalytic Friedel Crafts), 919
32.5 Arene Deacylation (Biocatalytic Retro Friedel-Crafts), 922
32.6 Arene Carboxylation (Biocatalytic Kolbe-Schmitt), 923
32.7 Arene Halogenation (Halogenases), 925
32.8 Arene Oxidation with Laccases, 925
32.9 Tetrahydroisoquinoline Synthesis (Biocatalytic Pictet-Spengler), 929
32.10 Arene Hydroxylation, 930
32.11 Arene Nitration, 932
32.12 Summary and Outlook, 933

Abbreviations, 934
References, 934
INDEX 939

Order by Fax - using the form below
Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

Product Name: Arene Chemistry. Reaction Mechanisms and Methods for Aromatic Compounds
Web Address: http://www.researchandmarkets.com/reports/3148890/
Office Code: SCH3S6I5

Product Format
Please select the product format and quantity you require:

Quantity

Hard Copy (Hard Back): ☐ USD 178 + USD 29 Shipping/Handling

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title: Mr ☐ Mrs ☐ Dr ☐ Miss ☐ Ms ☐ Prof ☐
First Name: ____________________________ Last Name: ____________________________
Email Address: * ____________________________
Job Title: ____________________________
Organisation: ____________________________
Address: ____________________________
City: ____________________________
Postal / Zip Code: ____________________________
Country: ____________________________
Phone Number: ____________________________
Fax Number: ____________________________

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card:
 You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check:
 Please post the check, accompanied by this form, to:
 Research and Markets,
 Guinness Center,
 Taylors Lane,
 Dublin 8,
 Ireland.

☐ Pay by wire transfer:
 Please transfer funds to:

<table>
<thead>
<tr>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Account number</td>
<td>833 130 83</td>
</tr>
<tr>
<td>Sort code</td>
<td>98-53-30</td>
</tr>
<tr>
<td>Swift code</td>
<td>ULSBIE2D</td>
</tr>
<tr>
<td>IBAN number</td>
<td>IE78ULSB9853083313083</td>
</tr>
<tr>
<td>Bank Address</td>
<td>Ulster Bank,</td>
</tr>
<tr>
<td></td>
<td>27-35 Main Street,</td>
</tr>
<tr>
<td></td>
<td>Blackrock,</td>
</tr>
<tr>
<td></td>
<td>Co. Dublin,</td>
</tr>
<tr>
<td></td>
<td>Ireland.</td>
</tr>
</tbody>
</table>

If you have a Marketing Code please enter it below:

Marketing Code: ____________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World