Safe and Secure Transport and Storage of Radioactive Materials

Description: Safe and Secure Transport and Storage of Radioactive Materials reviews best practice and emerging techniques in this area. The transport of radioactive materials is an essential operation in the nuclear industry, without which the generation of nuclear power would not be possible. Radioactive materials also often need to be stored pending use, treatment, or disposal. Given the nature of radioactive materials, it is paramount that transport and storage methods are both safe and secure.

A vital guide for managers and general managers in the nuclear power and transport industries, this book covers topics including package design, safety, security, mechanical performance, radiation protection and shielding, thermal performance, uranium ore, fresh fuel, uranium hexafluoride, MOX, plutonium, and more.

- Uniquely comprehensive and systematic coverage of the packaging, transport, and storage of radioactive materials
- Section devoted to spent nuclear fuels
- Expert team of authors and editors

Contents:

Related titles
List of contributors
1. Introduction to the packaging, transport and storage of radioactive materials
 1.1. Introduction
 1.2. Overview of the topic
 1.3. Scope of book
Part One. Frameworks for operational safety
2. Functional requirements for the design of transport packages
 2.1. Introduction
 2.2. Future trends in the nuclear industry
 2.3. General design features to meet regulatory requirements
 2.4. Packaging requirements
 2.5. Package design
3. Training in the nuclear transport industry
 3.1. Legal requirements
 3.2. Training scope (as required by the regulations)
 3.3. Training required
 3.4. Refresher training
 3.5. Other training considerations
 3.6. Modal guidance
 3.7. Sample syllabus
List of abbreviations
4. Public relations for the nuclear transport industry
 4.1. Introduction
 4.2. Risk perception
 4.3. Historical overview
 4.4. Security concerns
 4.5. Risk communication
 4.6. Future trends
 4.7. Additional information
5. Risk assessment approaches for the transport of radioactive material
 5.1. Introduction
 5.2. Routine, incident-free transportation
 5.3. Transport accidents in which the radioactive cargo is not damaged
 5.4. Transport accidents in which the radioactive cargo is damaged
 5.5. Transport accidents in which gamma shielding is lost
 5.6. Uncertainty in transport risk assessment
 5.7. Summary
6. Responding to emergencies associated with the transport of radioactive material
6.1. Introduction
emergency response: a necessary contribution to transport safety
6.2. Some significant events in radioactive material (RAM) transport
lessons drawn
6.3. Existing international requirements and recommendations
future trends
6.4. Roles and responsibilities for governmental and private, national and local organizations
6.5. Specific instrumentation, equipment and assessment tools needed for response according to transport
modes
6.6. Other specific issues for transport emergency response organization: international issues
6.7. Conclusions
6.8. Further information and references
Part Two. Package design and performance for transport
7. Structural performance of packages for radioactive materials
7.1. Introduction
7.2. Performance requirements
7.3. From requirements to package layout
7.4. Demonstration of package performance
7.5. Conclusions
8. Thermal performance of transportation packages for radioactive materials
8.1. Introduction
8.2. Basics of heat transfer
8.3. Regulatory aspects
8.4. Heat loads
8.5. Thermal design features
8.6. Materials
8.7. Thermal safety evaluations of the package
8.8. Testing and analysis
8.9. Summary and trends
9. Radiation protection by shielding in packages for radioactive materials
9.1. Introduction
9.2. Design base and safety function of shielding
9.3. Current industrial solutions and overview of shielding materials available
9.4. Future trends, new requirements, and severe conditions
10. Criticality analysis of packages for radioactive materials
10.1. Introduction
10.2. Regulatory requirements
10.3. Factors influencing criticality safety
10.4. Establishing the criteria for criticality safety
10.5. Prediction of keff
10.6. Criticality safety assessments
10.7. Current and future challenges
10.8. Irradiated fuel transport: a case study in reducing conservatism
10.9. Summary
11. Sea transport of irradiated nuclear fuel, plutonium and high-level radioactive wastes
11.1. Introduction
11.2. Regulatory requirements for sea transport
11.3. The INF code
11.4. Cargo stowage and segregation considerations
11.5. Operations
11.6. Emergency planning
11.7. Security
11.8. Nuclear liability
11.9. International relations
11.10. Future trends
11.11. Further information
11.12. Conclusions
Part Three. Packaging, transport and storage of particular types of radioactive materials
12. Packaging, transport and storage of uranium ore concentrates and uranium hexafluoride
12.1. Transport of uranium ore concentrates
12.2. Transport of uranium hexafluoride
12.3. Conclusions
13. Packaging and transport of unirradiated uranium dioxide fuel and nonirradiated mixed oxide fuel
13.1. Transport of unirradiated uranium dioxide fuel
13.2. Transport of nonirradiated mixed oxide fuel
13.3. Conclusions

Key words and definitions

14. Transport and storage of spent nuclear fuel
14.1. Spent fuel generation and characteristics
14.2. Overview of storage technologies
14.3. Issues of long-term storage
14.4. Long-term containment of metal gaskets for metal casks
14.5. Interaction between transport and storage on containment
14.6. Stress corrosion cracking of the canister for concrete cask
14.7. Holistic approach to assure transport and storage safety of metal cask

15. Packaging, transport, and storage of high-, intermediate-, and low-level radioactive wastes
15.1. Radioactive waste categories
15.2. Transport and storage of high-level waste
15.3. Transport and storage of low-level waste and intermediate-level waste
15.4. Operational experiences with containers for low-level and intermediate-level waste

Final remarks

16. Packaging, transport, and storage of large radioactive components
16.1. Introduction
16.2. Swedish perspective
16.3. International perspective
16.4. Packaging for large components and alternative solutions
16.5. Transport of large components
16.6. Storage of large components in general
16.7. International work and cooperation in the field of handling and transporting large radioactive components
16.8. Future trends
16.9. Sources of further information

17. Packaging, transport, and storage of medical and industrial radioactive materials
17.1. Introduction
17.2. Use and transport of radioisotopes for medical purposes
17.3. Transport of sealed sources used in industry and research
17.4. Aspects of transport of special-form and non-special-form radioactive material
17.5. Transport and storage of disused sources
17.6. Additional regulations for high-activity sealed sources
17.7. Denial of shipments in transport of radioactive material

Part Four. Long-term storage and subsequent transport of spent nuclear fuel and high-level radioactive waste

18. Wet storage of spent nuclear fuel
18.1. Introduction
18.2. Typical US spent-fuel pool and Fukushima
18.3. Aging management for extended long-term storage
18.4. Pool to pad and vacuum drying
18.5. Likely future trends
18.6. Sources of further information and advice
18.7. Conclusions

19. Long-term storage of spent nuclear fuel and high-level radioactive waste: strategies and implications for package design
19.1. Introduction
19.2. Overview of spent-fuel storage systems
19.3. Functional requirements and design loadings
19.4. Design implications of storage systems
19.5. High-level waste storage
19.6. Implications for extended storage
19.7. Trends

20. Transportation of spent nuclear fuel and high-level radioactive waste after long-term storage
20.1. Introduction
20.2. Possible issues resulting from long-term storage
20.3. Aging management
20.4. Storage/transport options
20.5. Disposition options
20.6. Transportation scenarios
20.7. Retrieval of the spent fuel after transportation
20.8. Conclusions
Index

Ordering:
Order Online - http://www.researchandmarkets.com/reports/3149063/

Order by Fax - using the form below

Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

Product Name: Safe and Secure Transport and Storage of Radioactive Materials
Web Address: http://www.researchandmarkets.com/reports/3149063/
Office Code: SCBRGHVU

Product Format
Please select the product format and quantity you require:

<table>
<thead>
<tr>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard Copy (Hard Back):</td>
</tr>
</tbody>
</table>

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title: [] Mr [] Mrs [] Dr [] Miss [] Ms [] Prof

First Name: ___________________ Last Name: ___________________
Email Address: * ___________________
Job Title: ___________________
Organisation: ___________________
Address: ___________________
City: ___________________
Postal / Zip Code: ___________________
Country: ___________________
Phone Number: ___________________
Fax Number: ___________________

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:

Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:

- Account number: 833 130 83
- Sort code: 98-53-30
- Swift code: ULSBIE2D
- IBAN number: IE78ULSB9853083313083
- Bank Address: Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: _______________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:

(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World