Water for Onshore Oil & Gas: Opportunities in produced water management, hydraulic fracturing and enhanced oil recovery

Description:
Oil and Gas production is increasing rapidly and, by 2035, it's predicted that oil production will increase to 97 million barrels and gas production will reach 5 trillion cubic metres per year to meet growing demands.

Managing the increased volumes of produced water associated with this production and sourcing water for operations is becoming more challenging. Scarce water resources have pushed operators to reuse produced water for water floods and fracturing fluids. Tighter environmental regulations are restricting the usual methods for disposing of produced water, encouraging operators to look at new approaches. Consequently, there are huge long-term opportunities for oilfield service companies and water technology providers in offering solutions to manage these challenges. This new report showcases the potential of this growing market.

Key Features
- Global market forecast for expenditure on produced water treatment and management, provision of hydraulic fracturing fluid and pre-treatment for enhanced oil recovery methods – so you can identify the regions with the best prospects for your business over the next 5 years.
- Technology trends – understand how existing technologies from the water sector are being adopted by the oil and gas industry, how new technologies will shape the future of this market and how these developments are creating opportunities for your business.
- Procurement models and supply chain analysis – understand the dynamics of the most attractive markets to help plan your market entry strategy and identify potential partners or competitors in these markets.
- Identify regional opportunities in the development of unconventional resources including shale gas, tight oil, heavy oil, coal bed methane and mature conventional oil fields
- Understand how the tailored solutions you offer can meet the unique water requirements for enhanced recovery from resources around the world.

Resource by region
- For every type of oil and gas resource, this report focuses on the regions with the biggest opportunities now and in the future, their unique extraction methods, water requirements and the regional trends and regulations for water sourcing and produced water treatment.

- This is the essential resource for identifying the areas that offer the best prospects for your business and identifying ways of developing your service offering in line with new trends and demands.

The report covers the following key areas of growth:
- Shale gas/tight oil – with a focus on tight oil production in the USA
- Heavy oil / bitumen – with focus on the Athabasca oil sands in Canada
- Coal bed methane – with a focus on coal seam gas production in Australia
- Conventional oil and gas (including IOR/EOR)

Regional breakdown
This report is your guide to the unique opportunities in the most attractive segments of this market. Find what's going on in:
- North America – Bitumen extraction in Canada, tight oil in the USA, coalbed methane and shale gas in the USA
- Latin America – Steam injection for heavy oil extraction in Colombia and Venezuela, and recent development of shale gas potential in Argentina and Mexico
- Asia-Pacific – Coal seam gas in Australia, and recent developments in coal bed methane extraction in Indonesia and China
- Middle East – Improved and enhanced oil recovery from fields in Kuwait, Saudi Arabia, Iraq and Oman
- Europe and Africa – Potential developments of shale gas and coalbed methane resources.

Opportunities

We show you the opportunities in the biggest markets and offer procurement models and supply chain analysis so you can understand the dynamics of each market and how to sell your services and technologies. The report identifies the following key areas opportunity:

- Produced Water Management – global volumes of produced water are steadily increasing in line with increased volumes of oil production. Water sector opportunities for handling this water are therefore increasing, driven largely by regulatory pressure and disposal restrictions. This report shows you how this is creating opportunities for advanced water treatment for reuse in hydraulic fracturing and enhanced oil recovery (EOR) processes; transport of this water; and disposal.
- Hydraulic Fracturing – unconventional oil and gas resources like shale gas, tight oil and coal bed methane use hydraulic fracturing to help bring the oil to the surface which requires large volumes of treated water. This report identifies the regional opportunities in pre-treatment of fracturing fluids, water sourcing and chemical services.
- Enhanced Oil Recovery (EOR) – EOR increases the amount of oil that can be extracted from a well by reducing the viscosity of the oil. In a market where oil producers need to maximise resources in mature oil fields or to extract unconventional resources, EOR is becoming a huge area of opportunity for water companies. We look at the prospects for secondary and enhanced oil recovery.

Contents:

1. Introduction
 Figure 1.1 Oil prices, 2000–2014
 Figure 1.2 Gas prices, 2000–2014
 1.1 Produced water
 1.1.1 Produced water treatment
 1.1.1.1 Produced water treatment trains
 Figure 1.3 Oil-water separation and suspended solids removal
 Figure 1.4 Oil-water separation treatment technologies
 1.1.1.2 Treatment of produced water with TDS removal technologies
 Figure 1.5 Treatment trains for TDS removal
 Figure 1.6 Comparison of produced water treatment technologies
 Figure 1.8 Cost of different produced water treatment options
 1.1.1.3 Trends in the produced water treatment market
 Figure 1.9 Selected produced water treatment technologies
 1.1.2 Channels to the market
 Figure 1.10 Supply chain matrix
 Figure 1.11 Route to the market (evaporator/crystalliser system) in North America
 1.1.2.1 Investment in water technologies
 Figure 1.12 Selected venture/growth equity investments in water technologies for O&G

2. General trends
 2.1 Oil production
 Figure 2.1 Historical and forecasted oil production by region, 2000–2030
 Figure 2.2 Onshore and offshore oil production, 2012
 Figure 2.3 Onshore oil production by region, 2012
 2.2 Oil reserves
 Figure 2.4 Proven oil reserves by region, 2012
 Figure 2.5 Proven oil reserves by resource type, 2012
 2.3 Gas production
 Figure 2.6 Historical and forecasted gas production by region, 2000–2030
 Figure 2.7 Onshore and offshore gas production, 2012
 Figure 2.8 Onshore gas production by region, 2012
 2.4 Gas reserves
 Figure 2.9 Proven gas reserves by region, 2012
 Figure 2.10 Technically recoverable gas reserves by resource type, 2012
 2.5 Global E&P companies
 2.6 Market forecast
 Figure 2.11 Global oil and gas water management market, 2014–2020
 Figure 2.12 Global oil and gas water management market by region, 2014–2020
 2.6.1 Produced water volumes
 Figure 2.13 Global produced water volumes by resource type, 2011–2020
3. Shale gas/tight oil

3.1 Extraction by hydraulic fracturing

3.1.1 Water management in the unconventional oil and gas industry

3.2 Global shale gas and tight oil resources

3.2.1 Overview of shale play production

3.2.2 Market drivers

3.2.3 Regulatory overview

3.2.3.1 Federal regulatory overview

3.2.3.2 State regulatory overview

3.3 United States

3.3.1 Overview of shale play production

3.3.2 Market drivers

3.3.3 Regulatory overview

3.3.3.1 Federal regulatory overview

3.3.3.2 State regulatory overview

3.3.4 Water sourcing

3.3.5 Water for fracturing

3.3.5.1 Fracturing fluids trends

3.3.6 Water management practices

3.3.6.1 Produced water management in Pennsylvania, 2013

3.3.7 Water management economics

3.3.8 Overview of water management practices in major unconventional plays in the US

3.3.9 Produced water management in Pennsylvania

3.4 Water management in the unconventional oil and gas industry

3.4.1 Water usage in hydraulic fracturing

3.4.2 Alternative sources of water for hydraulic fracturing

3.4.3 Proportion of water sources used for hydraulic fracturing in Texas

3.4.4 Water for fracturing

3.4.5 Water sourcing

3.4.6 Fracturing fluids trend

3.5 Water management practices

3.5.1 Fracturing fluid treatment matrix

3.6 Water management practices

3.6.1 Overview of water management practices in major unconventional plays in the US

3.6.2 Cost indicators for drilling and completion of horizontal wells

3.6.3 Water management economics

3.6.4 Produced water management in Pennsylvania

3.6.5 Produced water management in Pennsylvania, 2013

3.7 Groundwater and surface water law overview Water reuse regulations

3.8 Permitted water recycling companies in Texas

3.9 Proportion of water sources used for hydraulic fracturing in Texas

3.10 List of regulatory agencies in major shale gas and tight oil producing states Water sourcing regulations

3.11 Groundwater and surface water law overview Water reuse regulations

3.12 Permitted water recycling companies in Texas

3.13 Projected tight oil production in the US, 2008–2020

3.14 Projected shale gas production in the US, 2000–2020

3.15 List of regulatory agencies in major shale gas and tight oil producing states Water sourcing regulations

3.16 Groundwater and surface water law overview Water reuse regulations

3.17 Permitted water recycling companies in Texas

3.18 Average water usage for fracturing an oil and gas well

3.19 Proportion of water sources used for hydraulic fracturing in Texas

3.20 Fracturing fluids water treatment matrix

3.21 Cost indicators for drilling and completion of horizontal wells

3.22 Water management economics

3.23 Overview of water management practices in major unconventional plays in the US

3.24 Produced water management in Pennsylvania

3.25 Produced water management in Pennsylvania, 2013
3.3.6.2 Challenges to produced water reuse

Figure 3.25 WORs in major unconventional plays in the US, 2013
Figure 3.26 WGRs for major unconventional plays in the US, 2013
3.3.7 Produced water treatment technologies
Figure 3.27 Produced water treatment and reuse diagram
Figure 3.28 Selection of current water reuse solutions in the US
3.3.8 Water treatment delivery systems
3.3.8.1 Overview
3.3.8.2 Future opportunities
Figure 3.29 Centralised produced water treatment facilities in the US
3.3.9 Dynamics in the unconventional market
3.3.10 Procurement of water treatment technologies
Figure 3.30 Overview of procurement routes in the unconventional O&G industry in the US
3.3.10.1 Water treatment technology drivers
3.3.10.2 Market entry strategies
Partnering with water service providers
Partnering with OSCs
3.3.10.3 New technology entrants to the market
3.3.11 Supply chain
3.3.11.1 Exploration and production companies
Figure 3.31 Major exploration and production companies
3.3.11.2 Oilfield service companies
Figure 3.32 Major oilfield service companies in the US
3.3.11.3 Water service providers
Figure 3.33 Major water service providers in the US
Figure 3.34 Estimated market share of major water hauling service providers in the US, 2013
3.3.12 Market forecast: United States
Figure 3.35 Produced water volumes in shale gas and tight oil production, 2011–2020
Figure 3.36 Capital expenditure on produced water treatment for shale gas and tight oil, 2011–2020
3.4 Canada
3.4.1 Resources
Figure 3.37 Shale gas and shale oil resources in Canada
3.4.2 Exploitation
Figure 3.38 E&P companies active in the Horn River basin, 2011
Figure 3.39 The main E&P companies active in tight oil production in Canada
3.4.3 Market forecast: Canada
Figure 3.40 Produced water volumes in shale gas and tight oil production, 2011–2020
Figure 3.41 Capital expenditure on produced water treatment for shale gas and tight oil, 2011–2020
3.5 China
3.5.1 Resources and production
Figure 3.42 Basins and formations in China with assessed shale gas and shale oil resources
3.5.2 Institutional support
3.5.3 International E&P companies in China’s shale gas development
3.5.4 Challenges in E&P of shale gas in China
3.5.5 Market forecast: China
Figure 3.43 Produced water volumes in shale gas and tight oil production, 2011–2020
Figure 3.44 Capital expenditure on produced water treatment for shale gas and tight oil, 2011–2020
3.6 Argentina
3.6.1 Shale resources and activity
Figure 3.45 Size of shale resources in Argentina, by basin and formation
3.6.2 Challenges
3.6.3 International participation
3.6.4 Market forecast: Argentina
Figure 3.46 Produced water volumes in shale gas and tight oil production, 2011–2020
Figure 3.47 Capital expenditure on produced water treatment for shale gas and tight oil, 2011–2020
3.7 Mexico
3.7.1 Shale resources
Figure 3.48 Size of shale resources in Mexico, by basin and formation
3.7.2 Shale activity
3.7.3 Private participation in oil and gas E&P 3.7.4 Market forecast: Mexico
Figure 3.49 Produced water volumes in shale gas and tight oil production, 2011–2020
Figure 3.50 Capital expenditure on produced water treatment for shale gas and tight oil, 2011–2020
3.8 Global forecast
4. Coalbed methane

4.1 Australia

4.1.1 Market overview

4.1.1.1 CSG recovery

4.1.2 Market drivers

4.1.3 Regulations

4.1.3.1 Regulatory bodies in Queensland and NSW

4.1.4 Regional overview of the CSG market

4.1.4.1 CSG production in Queensland

4.1.4.2 CSG production in New South Wales

4.1.5 CSG produced water treatment

4.1.5.1 Quality of CSG produced water

4.1.5.2 Challenges of the CSG produced water market

4.1.5.3 Treatment of CSG produced water

4.1.5.4 Technology trends

4.1.6 Management of CSG produced water

4.1.7 Market dynamics

4.1.7.1 Procurement

4.1.7.2 Accessing the market

4.1.8 Supply chain analysis

4.1.8.1 E&P companies

4.1.9 CSG and water production by E&P companies in Queensland (January–June 2013)
4.1.8.2 Engineering
4.1.8.3 EPC companies
4.1.8.4 Leading water technology companies
Water technology companies entering the market
4.1.8.5 Recent and upcoming CSG projects
Figure 4.17 Recent CSG produced water projects
Figure 4.18 Upcoming LNG projects
4.1.9 Market forecast: Australia
Figure 4.19 Produced water volumes in coalbed methane production, 2011–2020
Figure 4.20 Capital expenditure on produced water treatment for coalbed methane, 2011–2020
4.2 United States
4.2.1 Market overview
Figure 4.21 CBM production in the US, 1990–2012
4.2.1.1 Regulations
4.2.2 Regional overview
Figure 4.22 US CBM production by state, 2006–2011
4.2.3 CBM water treatment and management
4.2.3.1 CBM water quality and volumes
Figure 4.23 CBM produced water characteristics
Figure 4.24 Average WGR of CBM wells in Colorado
4.2.3.2 CBM produced water treatment
Figure 4.25 CBM water treatment technologies
4.2.3.3 CBM produced water management
Water management strategies
Figure 4.26 Discharge routes in San Juan and Powder River basins
Figure 4.27 Water management strategies in San Juan and Powder River basins
4.2.4 Market forecast: United States
Figure 4.28 Produced water volumes in coalbed methane production, 2011–2020
Figure 4.29 Capital expenditure on produced water treatment for coalbed methane, 2011–2020
4.3 Canada
Figure 4.30 Main E&P companies active in CBM extraction
4.3.1 Market forecast: Canada
Figure 4.31 Produced water volumes in coalbed methane production, 2011–2020
Figure 4.32 Capital expenditure on produced water treatment for coalbed methane, 2011–2020
4.4 China
4.4.1 Exploration and production
4.4.2 CBM produced water
4.4.3 Market forecast: China
Figure 4.33 Produced water volumes in coalbed methane production, 2011–2020
Figure 4.34 Capital expenditure on produced water treatment for coalbed methane, 2011–2020
4.5 The Russian Federation
4.5.1 Market forecast: Russian Federation
Figure 4.35 Produced water volumes in coalbed methane production, 2011–2020
Figure 4.36 Capital expenditure on produced water treatment for coalbed methane, 2011–2020
4.6 Global forecast
Figure 4.37 Coalbed methane: Global produced water volumes, 2011–2020
Figure 4.38 Coalbed methane: Produced water capital expenditure by region, 2011–2020
Figure 4.39 Coalbed methane: Produced water capital expenditure by system, 2011–2020
4.7 Regional forecast
4.7.1 North America
Figure 4.40 Produced water volumes in coalbed methane production, 2011–2020
Figure 4.41 Capital expenditure on produced water treatment for coalbed methane, 2011–2020
4.7.2 Eastern Europe-Central Asia
Figure 4.42 Produced water volumes in coalbed methane production, 2011–2020
Figure 4.43 Capital expenditure on produced water treatment for coalbed methane, 2011–2020
4.7.3 East Asia-Pacific
Figure 4.44 Produced water volumes in coalbed methane production, 2011–2020
Figure 4.45 Capital expenditure on produced water treatment for coalbed methane, 2011–2020
4.7.4 Southern Asia
Figure 4.46 Produced water volumes in coalbed methane production, 2011–2020
Figure 4.47 Capital expenditure on produced water treatment for coalbed methane, 2011–2020
5. Heavy oil/bitumen
5.1 Steam EOR
Figure 5.1 The SAGD process
5.2 Canada
5.2.1 Market overview
5.2.2 Bitumen extraction: in-situ and open-pit mining
5.2.3 Water requirements for in-situ and mining processes
5.2.4 Water requirements of in-situ technologies
5.2.5 Bitumen upgrading
5.2.6 Market drivers
5.2.7 Regulations
5.2.7.1 Regulatory bodies
5.2.7.2 Relevant regulations
5.2.8 Water treatment in SAGD operations
5.2.8.1 Other technology approaches in SAGD Process water treatment Blowdown management
5.2.9 Procurement process
5.2.9.1 Characteristics
5.2.9.2 Entering the market
5.2.10 Supply chain analysis
5.2.10.1 E&P companies
5.2.10.2 Engineering firms
5.2.10.3 Water technology providers Overview
5.2.10.4 Focus on evaporation technology
5.2.11 Market forecast: Canada
5.3 Colombia
5.3.1 Market drivers
5.3.2 Water treatment technologies
5.3.3 Enhanced oil recovery (EOR)
5.3.4 Accessing the market
5.3.5 Procurement
5.3.6 Produced water reuse: initiatives in the Rubiales and Castilla oilfields
5.3.6.1 Desalination plants at the Rubiales oilfield
5.3.6.2 Conventional treatment in the Castilla oilfield
5.3.7 Unconventional plays
5.3.8 Market forecast: Colombia
5.4 Oman
5.4.1 Market forecast: Oman
5.4.2 Current and future steam EOR projects in Oman
5.4.3 Market forecast: Oman
5.5 Produced water volumes in steam EOR for heavy oil production, 2011–2020
5.6 Capital expenditure on produced water treatment in steam EOR for heavy oil, 2011–2020
5.5 Kuwait Figure
5.5.1 Market forecast: Kuwait
Figure 5.26 Produced water volumes in steam EOR for heavy oil production, 2011–2020
Figure 5.27 Capital expenditure on produced water treatment in steam EOR for heavy oil, 2011–2020
5.6 Venezuela
Figure 5.28 Total oil reserves in Venezuela, 2012
5.6.1 Orinoco Oil Belt (FPO)
5.6.2 Recovery methods for heavy oil in Venezuela
5.6.3 International participation in heavy oil E&P
5.6.4 Market forecast: Venezuela
Figure 5.29 Produced water volumes in steam EOR for heavy oil production, 2011–2020
Figure 5.30 Capital expenditure on produced water treatment in steam EOR for heavy oil, 2011–2020
5.7 United States
5.7.1 Market overview
Figure 5.31 Heavy oil production from steam EOR in the US, 1990–2020
5.7.2 Regional overview
5.7.2.1 California
Figure 5.32 Heavy oil production in the four main Californian oil fields, 1977–2012
Figure 5.33 Water to oil ratio for years following initial steam flood
Figure 5.34 Produced water disposal methods in fields using steam EOR in California, 2005–2013
5.7.3 Market forecast: United States
Figure 5.35 Produced water volumes in steam EOR for heavy oil production, 2011–2020
Figure 5.36 Capital expenditure on produced water treatment in steam EOR for heavy oil, 2011–2020
5.8 Global forecast
Figure 5.37 Steam EOR in heavy oil: Global produced water volumes, 2011–2020
Figure 5.38 Steam EOR in heavy oil: Produced water capital expenditure by region, 2011–2020
Figure 5.39 Steam EOR in heavy oil: Produced water capital expenditure by system, 2011–2020
5.9 Regional forecast 5.9.1 North America
Figure 5.40 Produced water volumes in steam EOR for heavy oil production, 2011–2020
Figure 5.41 Capital expenditure on produced water treatment in steam EOR for heavy oil, 2011–2020
5.9.2 Latin America-Caribbean
Figure 5.42 Produced water volumes in steam EOR for heavy oil production, 2011–2020
Figure 5.43 Capital expenditure on produced water treatment in steam EOR for heavy oil, 2011–2020
5.9.3 Western Europe
Figure 5.44 Produced water volumes in steam EOR for heavy oil production, 2011–2020
Figure 5.45 Capital expenditure on produced water treatment in steam EOR for heavy oil, 2011–2020
5.9.4 East Asia-Pacific
Figure 5.46 Produced water volumes in steam EOR for heavy oil production, 2011–2020
Figure 5.47 Capital expenditure on produced water treatment in steam EOR for heavy oil, 2011–2020
5.9.5 Middle East-North Africa
Figure 5.48 Produced water volumes in steam EOR for heavy oil production, 2011–2020
Figure 5.49 Capital expenditure on produced water treatment in steam EOR for heavy oil, 2011–2020

6. Conventional production
6.1 Water requirements for enhanced oil recovery (EOR)
Figure 6.1 Breakdown by country of global onshore enhanced oil production using EOR methods
Figure 6.2 Breakdown of global onshore enhanced oil production by EOR method used
Figure 6.3 Forecast of oil production by EOR from different countries in 2015 and 2030
6.2 The Middle East
6.2.1 Market overview
6.2.2 Market drivers
6.2.3 Produced water management and use
Figure 6.4 Estimated breakdown of management options for reinjection in the Middle East
6.2.4 Treatment trains
6.2.5 Procurement
6.2.5.1 Greenfield projects
6.2.5.2 Brownfield projects
6.2.5.3 Challenges and issues in the procurement process
6.2.6 Entering the market
6.2.7 Market players
6.2.7.1 E&P companies
6.2.7.2 EPC companies
Figure 6.5 Selected EPC companies active in the Middle East
6.2.7.3 Engineering consultants
Figure 6.6 Selected engineering companies active in the Middle East
6.2.7.4 Oilfield service companies
Figure 6.7 Selected oil service companies active in the Middle East
6.2.7.5 Water technology providers
Figure 6.8 Selected water technology companies active in the Middle East
6.2.8 Iraq
6.2.8.1 Oil and gas reserves and production
Figure 6.9 Proven oil and dry natural gas reserves in Iraq, 1980–2013
Figure 6.10 Map showing the main oil and gas fields in Iraq
Figure 6.11 Oil and dry natural gas production in Iraq, 1980–2012
6.2.8.2 Challenges in oil and gas industry development
6.2.8.3 Unconventional resources
6.2.8.4 Produced water management and use
6.2.8.5 Oil recovery methods
6.2.8.6 Treatment trains
6.2.8.7 Produced water market
6.2.9 Market forecast: Iraq
Figure 6.12 Produced water volumes in conventional oil and gas production, 2011–2020
Figure 6.13 Capital expenditure on produced water treatment for conventional production, 2011–2020
6.2.10 Kuwait
6.2.10.1 Oil and gas reserves and production
Figure 6.14 Proven oil and natural gas reserves in Kuwait, 1980–2013
Figure 6.15 Map showing the main oil fields in Kuwait
Figure 6.16 Oil and dry natural gas production in Kuwait, 1980–2012
6.2.10.2 Unconventional resources
6.2.10.3 Produced water management and use
6.2.10.4 Enhanced oil recovery methods
Figure 6.17 Current and future oil recovery projects in Kuwait
6.2.10.5 Treatment trains
6.2.10.6 Produced water market
6.2.11 Oman
6.2.11.1 Oil and gas reserves and production
Figure 6.18 Proven oil and natural gas reserves in Oman, 1980–2013
Figure 6.19 Oil and dry natural gas production in Oman, 1980–2012
6.2.11.2 Unconventional resources
6.2.11.3 Produced water
6.2.11.4 Produced water management and use
6.2.11.5 Enhanced oil recovery methods
Figure 6.20 PDO’s oil recovery methods
Figure 6.21 Current and future EOR projects in Oman
6.2.11.6 Treatment trains
6.2.12 Market forecast: Oman
Figure 6.22 Produced water volumes in conventional oil and gas production, 2011–2020
Figure 6.23 Capital expenditure on produced water treatment for conventional production, 2011–2020
6.2.13 Saudi Arabia
6.2.13.1 Oil and gas reserves and production
Figure 6.24 Major onshore oil fields in Saudi Arabia
Figure 6.25 Map of major oil fields and reservoirs in Saudi Arabia
Figure 6.26 Proven oil and dry natural gas reserves in Saudi Arabia, 1980–2013
Figure 6.27 Oil and dry natural gas production in Saudi Arabia, 1980–2012
6.2.13.2 Unconventional resources
6.2.13.3 Produced water management and use
6.2.13.4 Oil recovery methods
6.2.13.5 Treatment trains
6.2.13.6 Produced water market
6.2.14 Market forecast: Saudi Arabia
Figure 6.28 Produced water volumes in conventional oil and gas production, 2011–2020
Figure 6.29 Capital expenditure on produced water treatment for conventional production, 2011–2020
6.3 The United States
6.3.1 Market overview
6.3.2 Conventional oil production
Figure 6.30 US conventional oil production, 2000–2020
6.3.2.1 Regional overview
6.3.3 Conventional gas production
Figure 6.31 US conventional gas production, 2000–2020
6.3.3.1 Regional overview
Figure 6.32 Leading US states for conventional gas production 2007–2011
6.3.4 Market forecast: United States
Figure 6.33 Produced water volumes in conventional oil and gas production, 2011–2020
Figure 6.34 Capital expenditure on produced water treatment for conventional production, 2011–2020
6.4 The Russian Federation
6.4.1 Major players
6.4.2 Improved and enhanced oil recovery
6.4.3 Produced water treatment
6.4.4 Market forecast: Russian Federation
Figure 6.35 Produced water volumes in conventional oil and gas production, 2011–2020
Figure 6.36 Capital expenditure on produced water treatment for conventional production, 2011–2020
6.5 Global forecast
Figure 6.37 Conventional oil and gas: Global produced water volumes, 2011–2020
Figure 6.38 Conventional oil and gas: Produced water capital expenditure by region, 2011–2020
Figure 6.39 Conventional oil and gas: Produced water capital expenditure by system, 2011–2020
6.6 Regional forecast
6.6.1 North America
Figure 6.40 Produced water volumes in conventional oil and gas production, 2011–2020
Figure 6.41 Capital expenditure on produced water treatment for conventional production, 2011–2020
6.6.2 Latin America-Caribbean
Figure 6.42 Produced water volumes in conventional oil and gas production, 2011–2020
Figure 6.43 Capital expenditure on produced water treatment for conventional production, 2011–2020
6.6.3 Western Europe
Figure 6.44 Produced water volumes in conventional oil and gas production, 2011–2020
Figure 6.45 Capital expenditure on produced water treatment for conventional production, 2011–2020
6.6.4 Eastern Europe-Central Asia
Figure 6.46 Produced water volumes in conventional oil and gas production, 2011–2020
Figure 6.47 Capital expenditure on produced water treatment for conventional production, 2011–2020
6.6.5 East Asia-Pacific
Figure 6.48 Produced water volumes in conventional oil and gas production, 2011–2020
Figure 6.49 Capital expenditure on produced water treatment for conventional production, 2011–2020
6.6.6 Southern Asia
Figure 6.50 Produced water volumes in conventional oil and gas production, 2011–2020
Figure 6.51 Capital expenditure on produced water treatment for conventional production, 2011–2020
6.6.7 Middle East-North Africa
Figure 6.52 Produced water volumes in conventional oil and gas production, 2011–2020
Figure 6.53 Capital expenditure on produced water treatment for conventional production, 2011–2020
6.6.8 Sub-Saharan Africa
Figure 6.54 Produced water volumes in conventional oil and gas production, 2011–2020
Figure 6.55 Capital expenditure on produced water treatment for conventional production, 2011–2020

Interviewees
References

Ordering:
Order Online - http://www.researchandmarkets.com/reports/3162222/
Order by Fax - using the form below
Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct and select the format(s) you require.

Product Name: Water for Onshore Oil & Gas: Opportunities in produced water management, hydraulic fracturing and enhanced oil recovery
Web Address: http://www.researchandmarkets.com/reports/3162222/
Office Code: SCPLLSSVA

Product Formats
Please select the product formats and quantity you require:

<table>
<thead>
<tr>
<th>Product Format</th>
<th>Quantity</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronic (PDF) - Single User</td>
<td></td>
<td>USD 2987</td>
</tr>
<tr>
<td>Electronic (PDF) - Enterprise Wide</td>
<td></td>
<td>USD 11948</td>
</tr>
</tbody>
</table>

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title: Mr Mrs Dr Miss Ms Prof
First Name: __________________________ Last Name: __________________________
Email Address: * __________________________
Job Title: __________________________
Organisation: __________________________
Address: __________________________
City: __________________________
Postal / Zip Code: __________________________
Country: __________________________
Phone Number: __________________________
Fax Number: __________________________

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:
Marketing Code:

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World