Surgical Robots Market Shares, Strategies, and Forecasts, Worldwide, 2015 to 2021

Description: The new study Surgical Robots: Market Shares, Strategy, and Forecasts, Worldwide, 2015 to 2021 has 553 pages, 216 tables and figures. Worldwide surgical robot markets are poised to achieve significant growth as next generation systems provide a way to improve traditional open surgery and decrease the number of ports needed for minimally invasive surgery.

Intuitive Surgical has market leadership position, advanced technology, an impressive installed base and a well trained group of surgeons able to manage the robots. Patients fare better when the surgery is done by surgical robots. The documentation of improvements in care delivery, the ability to ensure better outcomes from surgery promise that surgical robotics is a strong growth market. Intuitive Surgical will be difficult to dislodge, its dominant position is based on technological excellence that keeps being improved and competitors have a difficult time catching up, much less improving on the Intuitive Surgical technology.

Other leading competitors will emerge and the group of several surgical robotic companies will collectively have enough marketing dollars and enough marketing clout to drive replacement of all open surgery. Robotic surgery is positioned to become the standard of care. Intuitive Surgical has achieved market saturation in colorectal surgery in the US, it will work on increasing its presence in other surgical market sectors. The leading robotic surgical companies are poised to grow through acquisition, purchasing smaller companies that have developed as specialized product and gained FDA approval. As detailed in the market research study there are a lot of those in every medical specialty and more to come.

The surgical robot market is characterized enormous variety and innovation. Snake robots are wonderfully interesting surgical robots. Medrobotics offers a highly articulated multi-linked robot. It enables minimally-invasive procedures to replace open surgical procedures. It works for many parts of the anatomy. It works in places in the body that are difficult or previously impossible to reach. The robot-assist platform includes on-board visualization. and contains multiple open device channels to accept a variety of third party surgical and interventional instruments. The robot enables physicians to operate through non-linear circuitous paths, self-supported, and through a single-site access into the body.

The maneuverability of the robot is gained from its numerous mechanical linkages with concentric mechanisms. Each mechanism can be placed into a rigid or a limp state. By employing a patented "follow-the-leader" movement strategy with these alternating states, the robot can be directed into any shape through the relative orientations of its linkages.

A surgical robot recurring revenue model business model is essentially large one time purchase for a system complimented by replaceable or disposable instruments that cumulatively market a much larger and ongoing market. Vendors make money from the one time sale of a system and recurring revenue from sale of devices used in every operation.

Initially, a vendor sells and installs the surgical system into new customer accounts. Once systems are sold into customer accounts, the vendor generates recurring revenue as our customers use the system to perform surgery. To do surgeries, the customers need to buy and consume instruments and accessory products. Vendors also generate recurring revenue from system service.

The ability to deliver such an accurate dose of radiation means that the cancer can be eradicated in patients before the patient is administered a lethal dose of radiation. This represents a cure for cancer once it gets working according to the promise of the systems now in place.

The Accuray radiation systems that address the oncology market are perhaps the most exciting technology ever offered to any market. Because the systems are able to control the dose of radiation Amount of activity in the market, many companies, FDA approvals, way for existing vendors to improve footprint in market In the field of radiation oncology, the Accuray CyberKnife® Robotic Radiosurgery System is universally recognized as the premier radiosurgery system capable of delivering high doses of radiation with sub-millimeter accuracy anywhere in the body. As validated and proven in numerous peer-reviewed publications, the precision and accuracy of the system combines with continual image guidance and robotic
mobility to deliver treatments characterized by high conformality and steep dose gradients. The newest addition to the CyberKnife product line, the CyberKnife VSI™ System, continues Accuray's tradition of innovation. Building on a foundation of accuracy and precision in radiosurgery, the CyberKnife VSI System extends these benefits to fractionated high precision radiation therapy with Robotic IMRT™ that can be delivered anywhere in the body.

The automated process revolution in surgery and communications is being implemented via robots. Robots automation of systems is providing significant improvement in the accuracy of surgery and the repeatability of process. According to Susan Eustis, lead author of the study, “Existing open surgery can be replaced in large part by robotic minimally invasive surgery (MIS) during the ofreast period. Minimally invasive robotic surgery, new robotic radiation treatment, and emerging robotic surgical approaches complement existing surgery techniques. Soon, all surgery will be undertaken with at least come aspects of robotic surgery replacing or complementing open surgery.”

During a robot assisted surgical procedure, the patient-side cart is positioned next to the operating table with the electromechanical arms arranged to provide access to the initial ports selected by the surgeon. Metal tubes attached to the arms are inserted through the ports, and the cutting and visualization instruments are introduced through the tubes into the patient's body.

The surgeon performs the procedure while sitting at a console, manipulating the instrument controls and viewing the operation through a vision system. When a surgeon needs to change an instrument the instrument is withdrawn from the surgical field using the controls at the console. This is done many times during an operation.

The companies that get an early foothold in the market have significant strategic advantage. The robotic surgical technique benefits hospitals by reducing the length of patient stays, thereby enabling better cost management. This factor is driving demand for surgery robot systems. Since robotics provide surgeons with a precise, repeatable and controlled ability to perform procedures in tight spaces, they are increasingly in demand.

The aging US population has supported demand, since the occurrence of health issues that require medical devices is higher in the elderly population. Buoyed by strong demand and sales, industry profit margins have increased considerably during the past five years. Hospitals are adopting robotic surgical devices to improve their outcomes numbers. Hospitals are measured on outcomes, robots for surgery, when used by a trained physician are improving outcomes significantly.

Hundreds of universities worldwide have research programs in robotics and many are awarding degrees in robotics. These “roboticists” are increasingly being hired by Global 2000 organizations to link mobile robots (mobile computers) into existing IT systems. Compared with other minimally invasive surgery approaches, robot-assisted surgery gives the surgeon better control over the surgical instruments and a better view of the surgical site. Surgeons no longer have to stand throughout the surgery and do not tire as quickly. Hand tremors are filtered out by the robot's computer software. The surgical robot can continuously be used by rotating surgery teams.

Surgical robot device markets at $3.2 billion in 2014 are anticipated to reach $20 billion by 2021 as next generation devices, systems, and instruments are introduced to manage surgery through small ports in the body instead of large open wounds. The complete report provides a comprehensive analysis including procedure numbers, units sold, market value, forecasts, as well as a detailed competitive market shares and analysis of major players' success, challenges, and strategies in each segment and subsegment. The reports cover markets for: medical specialties and sub-specialties.

Contents:

Surgical Robot Executive Summary
Surgical Robot Market Driving Forces
- Robotics Market Driving Forces
- Healthcare Robotics Enabling Technology
- Robotic-Assisted Minimally Invasive Surgery Market Driving Forces

Robotic-Assisted Minimally Invasive Surgery Market Shares
- Robotic-Assisted Minimally Invasive Surgery Market Shares

Robotic Surgery Equipment Market Forecasts
1. Surgical Robots Market Description and Market Dynamics
   1.1 Robotic Surgical System
      1.1.1 Market Strategy for the Robotic Surgical System
      1.1.2 Focus on Key Institutions
      1.2 Focus on Leading Surgeons to Drive Rapid and Broad Adoption
         1.2.1 Maintain Market Leadership
         1.2.2 Develop Industry Alliances
         1.2.3 Increasing Patient Awareness
   1.3 Clinical Applications For Technology
      1.4 Elder Assistance Robot Market Strategy
      1.5 Medical / Surgical Delivery Robots
         1.5.1 Assistive Technology
      1.6 Rehabilitation Robots
      1.7 Neuroscience Unveiling The Basic Mechanisms Of Neurogenesis And Neuroplasticity
         1.7.1 Neuro-Developmental Engineering
         1.7.2 Intelligent Rehabilitation
         1.7.3 Bilateral and Unilateral ADL-Focused Robot Therapies
         1.7.4 Robotic Rehabilitation Assistive Technology
         1.7.5 Robots, Aged Care, And Emotional Bonding With Machines
         1.7.6 InTouch Health Remote Presence
         1.7.7 InTouch Platforms Integrate Seamlessly With da Vinci Systems
         1.7.8 In Touch Health Remote Presence RP-7s Robot Doctors
      1.8 Educational Robots For Children in Hospitals
      1.9 Hospital Robots
         1.10 Mechanized Couriers
         1.10.1 Man vs. Machine: Robots at Japanese Hospital

2. Surgical Robot Market Shares and Forecasts
   2.1 Surgical Robot Market Driving Forces
      2.1.1 Robotics Market Driving Forces
      2.1.2 Healthcare Robotics Enabling Technology
      2.1.3 Robotic-Assisted Minimally Invasive Surgery Market Driving Forces
      2.2 Robotic-Assisted Minimally Invasive Surgery Market Shares
         2.2.1 Robotic-Assisted Minimally Invasive Surgery Market Shares
         2.2.2 Intuitive Surgical Robotics da Vinci® Surgical System
         2.2.3 Intuitive Surgical da Vinci Surgical System U.S. Procedures
         2.2.4 Hansen Medical
         2.2.5 Curexo Robodoc
         2.2.6 iRobot and InTouch Health
         2.2.7 MAKO Surgical
         2.2.8 Accuray
         2.2.9 Acuray Q3 FY 2012 Results
         2.2.10 Restoration Robotics
         2.2.11 Titan Robot Partners
         2.3 Robotic Surgery Equipment Market Forecasts
            2.3.1 Surgical Robot Systems Forecasts
            2.3.2 Surgical Robot Disposable Instruments Forecasts
            2.3.3 Surgical Robot Systems vs. Disposable Instruments Forecasts
            2.3.4 Surgical Robot Market Segment Forecasts
            2.3.5 Robotic Surgery Market Opportunity
            2.3.6 Robotic Surgery Equipment
            2.4 Medical Robotic Surgery Challenges
            2.5 Surgical Robot Applications
               2.5.1 Urology
               2.5.2 Gynecology
               2.5.3 General Surgery
               2.5.4 Cardiac
               2.5.5 Head and Neck Surgery
               2.5.6 US Target Procedures:
                  2.5.7 Intuitive Surgical da Vinci Surgical System Procedure Volume
2.5.8 Reported Clinical Benefits of da Vinci® hysterectomy Procedures for Benign Conditions
2.5.9 Robotic Surgery ENT Opportunity
2.5.10 General Surgery Robot Market Opportunities
2.6 Robotic Surgery Equipment Prices
2.6.1 Intuitive Surgical da Vinci Surgical System Prices
2.6.2 Accuray
2.7 Robotic Surgery Equipment Regional Market Segments
2.7.1 Intuitive Surgical Regional Revenue
2.7.2 Intuitive Surgical US Installations
2.7.3 Intuitive Surgical European Demand
2.7.4 Intuitive Surgical in Japan
2.7.5 Next Generation Robotic Surgery Becomes Worldwide
2.8 Total Number Of Surgical Procedures And Market Penetration of Surgical Robots
2.8.1 Hair Loss Robotic Surgery

3. Surgical Robots Product Description
3.1 Intuitive Surgical da Vinci Surgical System
3.1.1 Intuitive Surgical da Vinci Surgical System Components
3.1.2 Intuitive Surgical Patient-Side Cart and Electromechanical Surgical Arms
3.1.3 Intuitive Surgical 3-D Vision System
3.1.4 Intuitive Surgical Firefly Fluorescence Imaging
3.1.5 Intuitive Surgical da Vinci Skills Simulator
3.1.6 Intuitive Surgical Instruments and Accessories
3.1.7 Intuitive Surgical da Vinci Single-Site
3.1.8 Intuitive Surgical EndoWrist One Vessel Sealer
3.1.9 Intuitive Surgical Accessory Products
3.1.10 Intuitive Surgical Da Vinci Minimally Invasive Surgical Product
3.1.11 Intuitive Surgical Cardiac Surgery
3.2 Medrobotics Technology
3.2.1 Medrobotics Medical Devices for Minimally Invasive Surgery
3.2.2 Medrobotics Flexible Robot Platform
3.2.3 Medrobotics Snakelike Robots for Heart Surgery
3.2.4 Medrobotics Cardiac Surgery Snake Robot
3.2.5 Minimally Invasive Surgery Positioning:
3.3 Accuray CyberKnife M6 Series
3.3.1 Accuray CyberKnife M6 FIM System
3.3.2 Accuray / CyberKnife VSI System
3.3.3 Accuray / TomoTherapy System
3.3.4 Accuray CyberKnife G4 System
3.4 OR Productivity Prosurgics Freehand
3.4.1 OR Productivity Prosurgics FreeHand Robotic Value and Challenges
3.4.2 OR Productivity Prosurgics FreeHand Disposable Supplies
3.4.3 OR Productivity Prosurgics FreeHand Robotic Camera Controller for MIS
3.4.4 OR Productivity Prosurgics FreeHand 1.0
3.5 Restoration Robotics ARTAS Robotic System
3.5.1 Restoration Robotics Strengths and Challenges
3.6 Curexo Technology
3.6.1 Curexo ROBODOC Hip Or Knee Joint Surgical System
3.6.2 Curexo Technology Numerous Independent Clinical Studies
3.6.3 Curexo Technology Robodoc Surgical System
3.6.4 Curexo Technology ORTHODOC® Preoperative Planning Workstation
3.6.5 ROBODOC® Surgical Assistant
3.6.6 Curexo Technology Robodoc Surgical System Extensive Clinical Studies
3.6.7 Curexo ROBODOC® Surgical Assistant Strengths and Challenges
3.6.8 Curexo Robodoc
3.7 Hansen Medical Magellan™ Robotic System
3.7.1 Hansen Medical Magellan Robotic System
3.7.2 Magellan™ Robotic System Benefits
3.7.3 Hansen Medical Magellan Robotic System
3.7.4 Hansen Medical Magellan Robotic Catheter Intravascular Navigation
3.7.5 Hansen Sensei® X Robotic Catheter System
3.7.6 Hansen Advanced Robotic Solution for Arrhythmias
3.7.7 Hansen Medical Sensei X Robotic System
3.8 InTouch Health/iRobot RP-Vantage Surgical Procedure Consult Robot
3.8.1 iRobot / InTouch Health RP-Vita Acute Care Robot
3.8.2 InTouch Health/iRobot RP-Lite
3.8.3 InTouch Health/iRobot RP-Xpress
3.8.4 InTouch Health/iRobot AVA
3.9 MAKO Surgical
3.9.1 MAKO Surgical RIO Robotic Arm
3.10 Titan Medical Surgical Robotic System
3.10.1 Titan Robotic Single Incision Platform:
3.10.2 Titan Medical Amadeus Robotic Surgical System
3.11 Vecna Robotics QC Bot®
3.11.1 Vecna Robotics VGo
3.12 Georgia Tech Healthcare Robotics Lab PR2
3.12.1 Healthcare Robotics Lab Interdisciplinary Team
3.12.2 Healthcare Robotics Lab EL-E
3.12.3 Healthcare Robotics Lab EL-E Assistive Robot
3.12.4 Healthcare Robotics Lab Robotic Nurse Assistant
3.12.5 Georgia Tech HealthCare Robotics Dusty
3.12.6 HealthCare Robotics / iRobot
3.13 Corindus
3.13.1 Corindus Command. Control CorPath® 200 System
3.13.2 Corindus Standard in Precision PCI.
3.14 Motion Computing Motion C5v Tablet

4. Medical Robot Technology
4.1 Robotic Surgical Clinical Applications
4.1.1 Surgical Procedures
4.1.2 U.S. Robotic Surgical Procedures
4.1.3 Robotic Urologic Prostatectomy Surgery
4.1.4 Robotic Gynecologic Surgery
4.1.5 Robotic Myomectomy
4.1.6 Robotic Cardiothoracic Surgery
4.1.7 Robotic Internal Thoracic Artery Dissection
4.1.8 Robotic Thoracoscopy
4.1.9 Robotic Coronary Artery Bypass
4.1.10 Robotic General Surgery
4.2 Al Robot
4.2.1 Korea Focusing On Creating A Growth Engine In Research & Development
4.3 Care-O-bot Robot Mechanics
4.3.1 Care-O-bot Architecture
4.4 Government Regulation
4.4.1 California Regulation
4.4.2 International Regulation
4.5 Third Party Reimbursement

5. Surgical Robots Company Description
5.1 Accuray
5.1.1 Accuray Products
5.1.2 Accuray CyberKnife System
5.1.3 Accuray Strategy
5.1.4 Accuray International Presence
5.1.5 Accuray Competition
5.1.6 Accuray Revenue
5.1.7 Accuray Installed Base
5.1.8 New Data Validates CyberKnife SBRT for Prostate Cancer Treatment
5.2 Corindus
5.2.1 FDA Clears Corindus Robotic-Assisted System For Coronary Artery Disease Stent
5.3 Curexo Technology Corporation
5.3.1 Curexo Technology Virtual Model Of a Patient Joint
5.3.2 Curexo's Next-Generation Robodoc® Assists In Surgery
5.4 Freehand 2010
5.4.1 Freehand 2010 / Prosurgics
5.5 Hansen Medical
List of Tables and Figures:
Table ES-1 Robotics Market Driving Forces
Table ES-2 Healthcare Robotics Enabling Technologies
Table ES-3 Robotic-Assisted Minimally Invasive Surgery Market Driving Forces
Table ES-4 Types Of Procedures Performed Using Robotic Surgical System
Figure ES-5 Medical Surgical Robots Market Shares, Shipments, Dollars, Worldwide 2012
Table ES-6 Surgical Robot Forecasts Dollars, Worldwide, 2013-2019
Figure 1-1 Titan Medical Multi Articulating Arms
Figure 1-2 Instruments That Support Multiple Approach Paths To A Surgical Target
Figure 1-3 Robotic Surgery Improved Visualization Features
Table 1-4 Robotic Surgical Specialties Procedure Marketing Efforts Focus
Table 2-1 Robotics Market Driving Forces
Table 2-2 Healthcare Robotics Enabling Technologies
Table 2-3 Robotic-Assisted Minimally Invasive Surgery Market Driving Forces
Table 2-4 Types Of Procedures Performed Using Robotic Surgical System
Figure 2-5 Medical Surgical Robots Market Shares, Shipments, Dollars, Worldwide 2012
Table 2-6 Medical Surgical Robots Market Shares, Dollars, Worldwide, 2012
Table 2-7 Medical Surgical Robots Units and Installed Base, Units, Worldwide, 2012
Figure 2-8 Intuitive Surgical da Vinci Surgical System Worldwide Procedures
Figure 2-9 Intuitive Surgical da Vinci Surgical System Worldwide Installed Base
Table 2-10 Hansen Medical Sensei® X Robotic Catheter System
Figure 2-11 Curexo Robodoc
Figure 2-12 Titan Medical Novel robotic platform for Single Port Access Surgery
Figure 2-13 Titan Medical Amadeus Composer Surgical System
Table 2-14 Surgical Robot Forecasts Dollars, Worldwide, 2013-2019
Table 2-15 Surgical Robot Forecasts Dollars, Worldwide, 2013-2019
Table 2-16 Surgical Robot Market Segment Forecasts Dollars and Units, Worldwide, 2013-2019
Figure 2-17 Surgical Robot Systems Forecasts, Dollars, Worldwide, 2013-2019
Figure 2-18 Surgical Robot Disposable Instruments Forecasts, Dollars, Worldwide, 2013-2019
Figure 2-19 Surgical Robot Systems vs. Instruments Forecasts, Dollars, Worldwide, 2013-2019
Table 2-20 Surgical Robot Market Segment Forecasts Dollars and Units, Worldwide, 2013-2019
Table 2-21 Benefits of Robotic Surgery For The Surgeon
Table 2-22 Benefits of Robotic Surgery For The Patient
Table 2-23 Benefits of Robotic Surgery For The Hospital
Figure 2-24 Titan Medical Robotic Surgery Target Opportunity
Figure 2-25 Titan Medical Robotic Surgery Opportunity Analysis
Table 2-26 Challenges of Open Surgery and Minimally Invasive Surgery
Table 2-27 Challenges of Developing Medical Robotic Surgery Systems
Table 2-28 Surgical Robotic Product Development Challenges
Figure 2-29 Intuitive Surgical Prostatectomy Procedure Growth
Figure 2-30 Intuitive Surgical Prostatectomy Procedure Growth
Figure 2-31 Intuitive Surgical Hysterectomy Procedure Growth
Figure 2-32 Intuitive Surgical Hysterectomy Market Potential
Figure 2-33 Titan Medical Describes Surgical Robot ENT Market Potential
Figure 2-34 Titan Medical Describes Robotic General Surgery Market Potential
Figure 2-35 Surgical Robot Recurring Revenue Model
Figure 2-36 Surgical Robot Regional Market Segments, Dollars, 2012
Figure 2-37 Surgical Robot Regional Market Segments, 2012
Figure 2-38 Intuitive Surgical US Installations by State
Figure 2-39 Intuitive Surgical Installs by Country and Region
Table 2-40 Total Number Of Surgical Procedures Performed In Us
Table 2-41 Total Number Of Surgical Procedures Performed Worldwide
Table 2-42 US and Worldwide Robotic Surgery Target Procedures
Table 2-43 Actual Intuitive Surgical Surgeries: Prostate
Table 2-44 Actual Intuitive Surgical Surgeries: Hysterectomy
Table 2-45 Titan Medical Target Robotic Surgeries, Worldwide
Table 2-46 Robotic Surgeries Possible by Medical Condition
Table 2-47 Surgical Robot Installed Base and Market Penetration Analysis Forecasts By Procedure Type
Table 2-48 Surgical Robot Disposable Instruments and Market Penetration Analysis Forecasts By Procedure Type
Figure 3-1 Intuitive Surgical da Vinci Surgical System
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit
http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct and select the format(s) you require.

Product Name: Surgical Robots Market Shares, Strategies, and Forecasts, Worldwide, 2015 to 2021
Web Address: http://www.researchandmarkets.com/reports/3197584/
Office Code: SCH3895L

Product Formats
Please select the product formats and quantity you require:

<table>
<thead>
<tr>
<th>Quantity</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronic (PDF)</td>
<td>USD 4000</td>
</tr>
<tr>
<td>Single User</td>
<td></td>
</tr>
<tr>
<td>Electronic (PDF)</td>
<td>USD 8000</td>
</tr>
<tr>
<td>EnterpriseWide</td>
<td></td>
</tr>
</tbody>
</table>

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title: Mr ☐ Mrs ☐ Dr ☐ Miss ☐ Ms ☐ Prof ☐
First Name: ___________________________ Last Name: ___________________________
Email Address: * ___________________________
Job Title: ___________________________
Organisation: ___________________________
Address: ________________________________________________________________
City: ___________________________
Postal / Zip Code: ___________________________
Country: ___________________________
Phone Number: ___________________________
Fax Number: ___________________________

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: ____________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World