Introduction to Polymeric Composites with Rice Hulls

Description: There are many types of materials being used for composites, but polymers have played a major part as composite materials due to their versatility and seemingly endless possibilities. Constant research and development has enabled polymers to establish themselves as an essential part of daily life by replacing traditional materials over the years.

Polymer composites with biomasses have been the trend for some time now, with wood plastic composites (WPC) probably the most common. However, a new and exciting field of polymer composites are opening up: polymeric composites with rice hulls. These composites will have better properties than current polymer composites and provide a wider range of end applications from domestic to industrial to building construction. Also, their ability to achieve aesthetically pleasing finishes similar to natural wood veneers and better structural strength will provide an ideal substitute for natural wood. Moreover, these composites can be made available in pellet forms and can be used in injection moulding and other plastic processes to replace traditional resins at lower cost.

The author has over 40 years’ hands-on experience in local and international industrial fields. After much research on this subject, he presents sound practical knowledge on all aspects of polymeric composites with rice hulls. This book imparts detailed and valuable information from the basics of selecting the right processing machinery and raw materials to production technology for resin pellets and end products as well as the vast possibilities of end applications (including building construction). The exciting applications of products made from these polymeric composites with rice hulls as ideal substitutes for natural wood will evoke great interest and help ease current global environmental concerns.

This book will be an ideal source of information for resin-pellet manufacturers, processors and end users as well as enhance research in this field.

About the Author...

After his academic career at the University of Sri Lanka, Chris Defonseka pursued a career in plastics technology, specializing in polyurethane and expandable polystyrene foams. He has trained and worked at some of the largest chemical companies in the world such as ICI, Bayer AG, BASF, Huls AG, Hoechst AG, CIBA Geigy, BP Chemicals, Canon, R.H. Windsor in Europe, India, Switzerland, Germany, Singapore and Malaysia.

His creative expertise enabled him to design and fabricate - Styrofoam boxes for transport of human eyes for the first time in the world, a coating machine for artificial leather, a small plant for EPS products manufacture and a complete foaming and cutting system for flexible polyurethane foams. Also pioneered the manufacture of flexible PU foam in Sri Lanka.

Currently he is a consultant to CESO, a Canadian international agency, in addition to being a technical writer to local plastics magazines

Contents:
1 Introduction
 1.1 History of Composite Materials
 1.2 What are Composite Materials.
 1.2.1 Engineered Composites
 1.3 Types of Composites
 1.3.1 Composite Resins with Rice Hulls
 1.3.2 Composite Profiles with Rice Hulls
 1.3.3 Wood Polymer Composites
 1.3.4 High-density Polyethylene Resin Composites with Rice Hulls
 1.3.5 Polymer Composites with Recycled Plastics
 1.3.6 Fibre-reinforced Polymers
 1.3.7 Concrete
 1.3.8 Shape-polymer Composites
 1.3.9 Metal Fibre Composites
1.3.10 Thermoplastic Composites with Metal Powders
1.3.11 Structured Composites
1.3.12 Natural Composite - Wood
1.4 Uses for Composites
1.4.1 Polymeric Composite Resins in Injection Moulding
1.4.2 Polymeric Composite Resins in Extrusion
1.4.3 Polymeric Composites in Compression Moulding
1.4.4 Some widely used Applications for Composites
1.5 Why use Thermoplastic Bio-composites.

2 Basic Technology of Plastics
2.1 Introduction to Plastics
2.2 Chemistry of Plastics
2.2.1 The Atom
2.2.2 Molecular Weight (Mass)
2.2.3 Polymeric Molecules
2.2.4 Polymers
2.2.5 Polymerisation
2.2.6 Polymer Structures
2.2.7 Morphological Structures
2.2.8 Polymer Blends
2.2.9 Filled Polymers
2.2.10 Modified Polymers
2.2.11 Polymer Groups
2.3 Properties of Plastics
2.3.1 Compatibility of Material Properties
2.3.2 Mechanical Properties
2.3.3 Friction and Wear
2.3.4 Environmental Effects
2.3.5 Water Absorption
2.3.6 Weathering Effects
2.4 Moulding Process for Plastics
2.5 Recycling of Plastics

3 Composite Technology
3.1 Principles of Composites
3.1.1 Principles of Polymeric Composite Resins
3.1.2 Principles of Polymeric Composite Extruded Profiles
3.1.3 Principles of Polymeric Composites in Injection Moulding
3.1.4 Principles of Polymeric Composites in Compression Moulding
3.2 Formation of Composites
3.2.1 Extrusion
3.2.2 Matched Die
3.2.3 Hand Layup Processing
3.2.4 Spray-up Processing
3.2.5 Rigid Vacuum Forming
3.2.6 Vacuum-bag Process
3.2.7 Pressure-bag Processing
3.2.8 Filament Winding Process
3.2.9 Centrifugal Reinforcing
3.2.10 Pultrusion
3.2.11 Cold Stamp Forming
3.3 General Properties of Composites
3.3.1 Density
3.3.2 Compressive Strength
3.3.3 Impact Strength
3.3.4 Permeability and Sorption
3.3.5 Weathering
3.3.6 Water Absorption
3.3.7 Friction and Wear
3.3.8 Fatigue
3.3.9 Aesthetic Properties
6.5 Long Fibre-reinforced Thermoplastics
6.6 Polymeric Composites with other Fibres

7 Important Stages of the Production Process
7.1 Reduction of Particle Size
7.1.1 Equipment used for Reduction of Particle Size
7.2 Drying of Rice Hulls
7.2.1 Bulk Drying Systems
7.2.2 Summary
7.3 Mixing and Compounding
7.3.1 Industrial Mixers
7.4 Single-screw Compounders
7.5 Twin-screw Compounders
7.5.1 Basic Characteristics
7.5.2 Co-rotating Intermeshing Extruders
7.5.3 Counter-rotating Non-intermeshing Extruders
7.5.4 Continuous Mixers
7.6 Pelletising of Polymeric Composites
7.7 Processing of Polymeric Composites by Extrusion
7.8 Extrusion Guidelines
7.8.1 Extrusion Screws
7.8.2 Melt Temperature
7.8.3 Temperature Settings
7.8.4 Extruder Warm-up
7.8.5 Heat Supply
7.8.6 Die Heaters

8 Colouring of Polymers and Composites
8.1 Introduction
8.1.1 Theory of Colours
8.1.2 Colour Wheel
8.1.3 Primary Colours
8.1.4 Secondary Colours
8.1.5 Tertiary Colours
8.1.6 Warm and Cool Colours
8.1.7 Tints, Shades and Tones
8.1.8 Colour Harmonies
8.2 Masterbatches
8.3 Liquid and Solid Colourants for Polymer Composites
8.4 Methods of Colouring Polymers
8.4.1 Masterbatch Concentrates
8.4.2 Cube Blends
8.4.3 Pre-coloured Polymer Resins
8.5 Universal Masterbatches
8.6 Custom Colours for Polymers

9 Manufacturing of Polymeric Composite Resins
9.1 Concept
9.2 Manufacturing Process in Brief
9.3 Raw Materials
9.3.1 Polymers
9.3.2 Rice Hulls
9.3.3 Additives
9.4 Processing Machinery and Equipment
9.4.1 Co-rotating Twin-screw Extrusion/Pelletising Line
9.4.2 Specifications

10 Polymeric Composites with Rice Hulls for Extrusion
10.1 Concept
10.2 Production of Additives for Polymeric Composites with Rice Hulls
10.2.1 Coupling Agents
10.2.2 Lubricants
10.2.3 Colourants
10.2.4 Chemical Foaming
10.2.5 Countering Mould and Mildew
10.2.6 Fillers
10.3 Extrusion of Polymeric Composites with Rice Hulls
10.4 Extrusion Systems for Polymeric Composites with Rice Hulls
10.5 End Applications of Products of Polymeric Composites with Rice Hulls

11 Polymeric Composite Resins in Injection Moulding
11.1 Introduction to Injection Moulding
11.2 Injection Moulding Machine
11.3 Polymer Resins for Injection Moulding
11.4 Injection Moulding Process
11.5 Guidelines for Injection Moulding with Composite Resins
11.6 Selection of Polymeric Composite Resins
11.6.1 Moisture Content
11.6.2 Pellet Characteristics
11.6.3 Correct Grades
11.7 Recommended Processing Guidelines
11.7.1 Causes for Rejection of Parts in Injection Moulding

12 Polymeric Composite Resins in Compression Moulding
12.1 Uses of Rice Hull Ash
12.1.1 Steel Industry
12.1.2 Cement Industry
12.1.3 Other Uses
12.1.4 Rice Hull Ash in Road Building
12.2 What is Compression Moulding
12.3 Brief History of Compression Moulding
12.4 Raw Materials for Compression Moulding
12.4.1 Thermoplastic Polymeric Composite Resins
12.4.2 Thermosetting Polymeric Composite Resins
12.5 Dangers and Safety Information
12.6 Compression-moulded Products
12.6.1 Compression Moulding in the Automotive Industry
12.6.2 Compression Moulding in the Construction Industry
12.6.3 Compression Moulding in the Consumer Sector
12.6.4 Compression Moulding in the Food Services Sector
12.6.5 Compression Moulding in the Industrial Sector
12.6.6 Compression Moulding in the Medical Sector

Abbreviations
Glossary
Appendices 1
Appendices 2
Index

Ordering:
Order Online - http://www.researchandmarkets.com/reports/3288690/

Order by Fax - using the form below

Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

Product Name: Introduction to Polymeric Composites with Rice Hulls
Web Address: http://www.researchandmarkets.com/reports/3288690/
Office Code: SCH3S6CH

Product Format
Please select the product format and quantity you require:

Quantity
Hard Copy - Enterprisewide: [] USD 75 + USD 29 Shipping/Handling

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in **BLOCK CAPITALS**

Title: [] Mr [] Mrs [] Dr [] Miss [] Ms [] Prof
First Name: ______________________ Last Name: ______________________
Email Address: * ______________________
Job Title: ______________________
Organisation: ______________________
Address: ______________________
City: ______________________
Postal / Zip Code: ______________________
Country: ______________________
Phone Number: ______________________
Fax Number: ______________________

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:

Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:

Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: ____________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World