Nanomaterials and Nanocomposites. Zero- to Three-Dimensional Materials and Their Composites

Description: Nanomaterials are defined as materials in which at least one length dimension is below 100 nanometers. In this size regime, these materials exhibit particular – and tunable – optical, electrical or mechanical properties that are not present at the macro-scale. This opens up the possibility for a plethora of applications at the interface of materials, chemistry, physics and biology, many of which have already entered the commercial realm. When nanomaterials are blended with other materials not necessarily in the nanometer regime, the resulting nanocomposites can exhibit dramatically different properties than the bulk material alone, leading to an enhanced performance in terms of, for example, increased thermal and mechanical stability.

This book presents the synthesis, characterization and applications of nanomaterials and nanocomposites, covering zero-dimensional, elemental nanoparticles, one-dimensional materials such as nanorods and nanowhiskers, two-dimensional materials such as graphene and boron nitride as well as three-dimensional materials such as fullerenes, polyhedral oligomers and zeolites, complemented by bio-based nanomaterials, e.g., cellulose, chitin, starch and proteins. Introductory chapters on the state-of-the-art of nanomaterial research and the chemistry and physics in nanoscience and nanotechnology round off the book.

Contents:

List of Contributors XV

1 Introduction for Nanomaterials and Nanocomposites: State of Art, New Challenges, and Opportunities 1
P. M. Visakh

1.1 Chemistry of Nanoscience and Technology 1

1.2 Carbon Nanotubes and Their Nanocomposites 2

1.3 Graphene- and Graphene Sheets-Based Nanocomposites 3

1.4 Nanocomposites of Polyhedral Oligomeric Silsesquioxane (POSS) and Their Applications 4

1.5 Zeolites and Composites 6

1.6 Mesoporous Materials and Their Nanocomposites 7

1.7 Bio-Based Nanomaterials and Their Bio-Nanocomposites 9

1.8 Metal Organic Frameworks (MOFs) and Their Composites 10

1.9 Modeling Methods for Modulus of Polymer/Carbon Nanotube (CNT) Nanocomposites 12

1.10 Nanocomposites Based on Cellulose, Hemicelluloses, and Lignin 13

References 15

2 Chemistry of Nanoscience and Technology 21
Aftab Aslam Parwaz Khan, Anish Khan, and Abdullah M. Asiri

2.1 Introduction 21

2.2 Nano 22

2.3 Nanomaterials 24

2.4 Quantum Materials 25
2.4.1 Classification of Superconductor 26
 2.4.1.1 Response to a Magnetic Field 26
 2.4.1.2 By Theory of Operation 27
 2.4.1.3 By Critical Temperature 27
 2.4.1.4 By Material 27
 2.4.1.5 Fullerene 28

2.5 Forces and Bonding of Nanomaterials 29
 2.5.1 Hydrogen–Bonding Assemblies 29
 2.5.2 Stacking Assemblies 31
 2.5.3 Assemblies by Hydrophilic and Hydrophobic Interactions 33
 2.5.4 Metal Ligand Interactions 36
 2.5.5 Other Methods for Construction Nanomaterials 39

2.6 Zero–Dimensional Nanomaterials 40
2.7 One–Dimensional Nanomaterials 42
2.8 Two–Dimensional Nanomaterials 47

2.9 Challenges in Nanoscience and Nanotechnology 54
 2.9.1 Challenges for Technological 54
 2.9.2 Challenges and Research for the Social Cluster 54
 2.9.3 The World Is Facing a Water Crisis 55

2.10 Applications of Nanoscience and Technology 59
 2.10.1 Personal Care Products 59
 2.10.2 Clays 60
 2.10.3 Paints 60
 2.10.4 Coatings and Surfaces 60
 2.10.5 Renewable Energy 61
 2.10.6 Batteries 61
 2.10.7 Fuel Additives 61
 2.10.8 Fuel Cells 62
 2.10.9 Displays 62
 2.10.10 Catalysts 62
 2.10.11 Food 63
 2.10.12 Consumer Products 63
4.1.2 Properties of Graphene and Graphene Sheets 110
 4.1.2.1 Electronic Properties 110
 4.1.2.2 Mechanical Properties 110
 4.1.2.3 Optical Properties 111
 4.1.2.4 Raman Spectroscopy of Graphene 112
4.1.3 Synthesis of Graphene and Graphene Sheets 112
 4.1.3.1 Exfoliation 113
 4.1.3.2 Epitaxial on Silicon Carbide 116
 4.1.3.3 Chemical Vapor Deposition 116
 4.1.3.4 Chemical Synthesis 118
4.1.4 Chemical Modifications of Graphene and Graphene Sheets 118
4.1.5 Physical Modifications of Graphene and Graphene Sheets 120
4.2 Graphene and Graphene Sheets Based Nanocomposites 121
 4.2.1 Graphene and Graphene Sheets/Rubber Based Nanocomposites Preparation, Characterization, and Applications 123
 4.2.2 Graphene and Graphene Sheets/Thermoplastic Based Nanocomposites Preparation, Characterization, and Applications 127
 4.2.3 Graphene and Graphene Sheets/Thermoset Based Nanocomposites Preparation, Characterization, and Applications 129
 4.2.3.1 Characterization of GO, PI, and PI/GO Nanocomposites 130
 4.2.4 Interfacial Interaction of Graphene and Graphene Sheets in Nanocomposites 133
4.3 Graphene and Graphene Sheets in Thermoplastic Based Blends Preparation, Characterization, and Applications 135
 4.4 Graphene and Graphene Sheets in Rubber Rubber Blends Preparation, Characterization, and Applications 138
4.5 Graphene and Graphene Sheets Based Micro and Macro Composites 143
4.6 Conclusion 144

References 145

5 Nanocomposites of Polyhedral Oligomeric Silsesquioxane (POSS) and Their Applications 151
 Dhorali Gnanasekaran
 5.1 Introduction 151
 5.1.1 Nanocomposites 151
 5.1.2 How Nanocomposites Work? 154
 5.1.3 Applications 154
 5.1.4 Polyhedral Oligomeric Silsesquioxane (POSS) 154
6.6.1.6 Pore Properties 206
6.6.2 Chemical Properties 206
6.6.2.1 Basicity 206
6.6.2.2 Adsorption 207
6.6.2.3 Ion-Exchange 207
6.7 Applications 208
6.7.1 Fuel Cells 208
6.7.2 Dye Sensitized Solar Cells (DSSCs) 209
6.7.3 Batteries 210
6.7.4 Oil Refining 211
6.7.5 Photocatalysts 212
6.7.6 Hydrogen (H2) Storage 213
6.7.7 CO2 Capture 214
6.8 Future Perspectives of Zeolites and Their Composites 214
6.9 Conclusion 216
References 216

7 Mesoporous Materials and Their Nanocomposites 223
Vijay K. Tomer, Sunita Devi, Ritu Malik, and Surender Duhan
7.1 Introduction of Mesoporous Materials 223
7.2 IUPAC Classification of Porous Materials 224
7.3 Synthesis Pathways for the Formation of Mesoporous Materials 225
7.4 Role of Structure Directing Agents/Surfactants 225
7.4.1 Lyotropic Liquid Crystals (LLCs) 227
7.5 Type of Surfactants 229
7.5.1 Charged Surfactant Template 229
7.5.2 Neutral Surfactant Templates 230
7.6 Role of Templates 231
7.6.1 Soft Templates 231
7.6.2 Hard Templates 231
7.7 Types of Mesoporous Materials: Structure and Properties 232
7.7.1 Mesoporous Silica 232
7.7.1.1 M41S Materials 233
8.2.4.2 NWNanocomposites 272
8.2.4.3 NFC Nanocomposites 275
8.2.4.4 Characterization and Applications of Nanocomposites 276
8.3 Chitin/Chitosan 276
8.3.1 Structure and Properties of Chitin/Chitosan 277
8.3.1.1 Physico-Chemical Properties of Chitin/Chitosan 278
8.3.1.2 Biological Properties of Chitin/Chitosan 278
8.3.1.3 Applications of Chitin/Chitosan 278
8.3.2 Origin of Chitin/Chitosan 279
8.3.3 Chitin Nanomaterials: Preparation, Characterization, and Applications 279
8.3.4 Chitin Nanocomposites: Preparation, Characterization, and Applications 282
8.4 Starch 287
8.4.1 Structure and Properties of Starch 287
8.4.2 Origin of Starch 287
8.4.3 Starch Nanoparticles: Preparation, Characterization, and Applications 288
8.4.3.1 Emulsion/Homogenization 289
8.4.3.2 Nanoprecipitation 289
8.4.3.3 Acid Hydrolysis 290
8.4.3.4 Ultrasonication 290
8.4.3.5 Schiff Base Reaction 290
8.4.3.6 Starch Nanocrystals (StNCs) 290
8.4.3.7 Preparation of StNCs 291
8.4.3.8 Applications of Starch Nanoparticles 292
8.4.4 Starch Nanocomposites (StNCs): Preparation, Characterization, and Applications 293
8.5 Soy Protein Isolate (SPI) 294
8.5.1 Structure and Properties of SPI 295
8.5.2 Origin of Soy Protein Isolate 295
8.5.3 SPI Nanomaterials: Preparations, Characterization, and Applications 295
8.5.4 SPI Nanocomposites: Preparation, Characterization, and Applications 297
8.6 Casein (CAS) 299
8.6.1 Structure and Properties of Casein Nanomaterials 299
8.6.2 Origin of Casein 300
8.6.3 Casein Nanomaterials: Preparation, Characterization, and Applications 301
8.6.3.1 Casein Nanosized Micelles/Nanocapsules 301
8.6.3.2 Casein Nanogels 302
8.6.3.3 Casein–Polyelectrolyte Complex Nanoparticles 302
8.6.3.4 Characterization of Nanoparticles 303
8.6.4 Casein Nanocomposites: Preparation, Characterization, and Applications 304
8.7 Alginates 307
8.7.1 Structure and Properties 307
8.7.2 Origin of Alginates 308
8.7.3 Alginates Nanomaterials: Preparation, Characterization, and Applications 308
8.7.4 Alginates Nanocomposites: Preparation, Characterization, and Applications 309
8.8 Other Polymers 312
8.8.1 Gelatin/Collagen 312
8.8.2 Whey Protein 313
8.9 Conclusions 313
List of abbreviations 315
References 316
9 Metal–Organic Frameworks (MOFs) and Its Composites 331
Ali Morsali and Lida Hashemi
9.1 Composites 332
9.1.1 MOF–Organic Matrix Composites 332
9.1.2 MOF–Inorganic Matrix Composites 334
9.1.3 Composites of MOFs with Graphite Oxide 335
9.1.4 Composites of MOFs with Functionalized Graphite 338
9.1.5 Composites of MOFs with Carbon Nanotubes 341
9.1.6 Composites of MOFs with Polymers 345
9.1.6.1 Hybrids of MIL–101 and Phosphotungstic Acid (MIL101/PTA) 347
9.1.6.2 Reaction Catalysis by MIL–101 and MIL101/PTA Composites 348
9.1.7 Composites of MOFs with Mesoporous Silica and Alumina 351
9.1.8 Composites of MOFs with Metal Nanoparticles 358
9.1.9 Composites of MOFs with Silk 360
References 365
10 Modeling Methods for Modulus of Polymer/Carbon nanotube (CNT) Nanocomposites 367
Yasser Zare and Hamid Garmabi

10.1 Introduction 367
10.2 Results and Discussion 369
10.2.1 Molecular Modeling 369
10.2.1.1 Molecular Dynamics (MD) 369
10.2.1.2 Molecular Mechanics (MM) 369
10.2.2 Continuum Methods 369
10.2.2.1 Computational Continuum Modeling 370
10.2.2.2 Micromechanics Models 371
10.2.3 Multiscale Techniques 380
10.3 Conclusions and Future Challenges 383

References 383

11 Nanocomposites Based on Cellulose, Hemicelluloses, and Lignin 391
Diana Elena Ciolacu and Raluca Nicoleta Darie

11.1 Introduction 391
11.2 Cellulose 392
11.2.1 Morphology and Structural Aspects of Cellulose 392
11.2.2 Preparation and Characterization of Cellulose Nanoparticles (CNs) 395
11.2.2.1 Nanofibrillated Cellulose (NFC) 395
11.2.2.2 Cellulose Nanocrystals (CNCs) 399
11.2.2.3 Bacterial Nanocellulose (BNC) 402
11.2.3 Cellulose Nanocomposites 402
11.2.4 Applications of Nanocellulose 404
11.3 Hemicellulose 405
11.3.1 Methods for the Isolation of Hemicellulose 406
11.3.2 Preparation of Nanoparticles from Hemicelluloses 408
11.3.3 Hemicellulose Nanocomposites 409
11.4 Lignin 410
11.4.1 Procedures for Lignin Isolation and Their Properties 410
11.4.2 Lignin-based Nanomaterials and Nanocomposites 411
11.4.3 Applications of Nanomaterials Containing Lignin 413
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

Product Name: Nanomaterials and Nanocomposites. Zero- to Three-Dimensional Materials and Their Composites
Web Address: http://www.researchandmarkets.com/reports/3327700/
Office Code: SCEBGQIQ

Product Format
Please select the product format and quantity you require:

<table>
<thead>
<tr>
<th>Quantity</th>
<th>USD 194 + USD 29 Shipping/Handling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard Copy (Hard Back):</td>
<td></td>
</tr>
</tbody>
</table>

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title: [] Mr [] Mrs [] Dr [] Miss [] Ms [] Prof
First Name: __________________________ Last Name: __________________________
Email Address: * __________________________
Job Title: __________________________
Organisation: __________________________
Address: __________________________
City: __________________________
Postal / Zip Code: __________________________
Country: __________________________
Phone Number: __________________________
Fax Number: __________________________

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:

Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:

Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: ____________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp