Resistive Switching. From Fundamentals of Nanoionic Redox Processes to Memristive Device Applications

Description:

With its comprehensive coverage, this reference introduces readers to the wide topic of resistance switching, providing the knowledge, tools, and methods needed to understand, characterize and apply resistive switching memories.

Starting with those materials that display resistive switching behavior, the book explains the basics of resistive switching as well as switching mechanisms and models. An in-depth discussion of memory reliability is followed by chapters on memory cell structures and architectures, while a section on logic gates rounds off the text.

An invaluable self-contained book for materials scientists, electrical engineers and physicists dealing with memory research and development.

Contents:

Preface XIX
List of Contributors XXI
1 Introduction to Nanoionic Elements for Information Technology 1
Rainer Waser, Daniele Ielmini, Hiro Akinaga, Hisashi Shima, H.-S. Philip Wong, Joshua J. Yang, and Simon Yu
1.1 Concept of Two-Terminal Memristive Elements 1
1.1.1 Classifications Based on Behavior, Mechanisms, and Operation Modes 1
1.1.2 Scope of the Book 6
1.1.3 History 9
1.2 Memory Applications 12
1.2.1 Performance Requirements and ParameterWindows 12
1.2.2 Device Isolation in Crossbar Arrays 16
1.2.3 3-D Technology 19
1.2.4 Memory Hierarchy 20
1.3 Logic Circuits 21
1.4 Prospects and Challenges 24
Acknowledgments 25
References 25
2 ReRAM Cells in the Framework of Two-Terminal Devices 31
E. Linn, M. Di Ventra, and Y. V. Pershin
2.1 Introduction 31
2.2 Two-Terminal Device Models 32
2.2.1 Lumped Elements 32
2.2.2 Ideal Circuit Element Approach 32
2.2.3 Dynamical Systems Approach 33
2.2.3.1 Memristive Systems 33
2.2.3.2 Memristor 34
2.2.4 Significance of the Initial Memristor and Memristive System Definitions in the Light of Physics 34
2.2.4.1 Limitations of Ideal Memristor Models 35
2.2.5 Memristive, Memcapacitive, and Meminductive Systems 35
2.2.6 ReRAM: Combination of Elements, Combination of Memory Features, and Consideration of Inherent Battery Effects 36
2.3 Fundamental Description of Electronic Devices with Memory 38
2.4 Device Engineer’s View on ReRAM Devices as Two-Terminal Elements 40
2.4.1 Modeling of Electrochemical Metallization (ECM) Devices 41
2.4.2 Modeling of Valence Change Mechanism (VCM) Devices 43
2.5 Conclusions 46
Acknowledgment 47
References 47

3 Atomic and Electronic Structure of Oxides 49
Tobias Zacherle, Peter C. Schmidt, and Manfred Martin
3.1 Introduction 49
3.2 Crystal Structures 50
3.3 Electronic Structure 54
3.3.1 From Free Atoms to the Solid State 55
3.3.2 Electrons in Crystals 58
3.3.2.1 Free Electron Model (Sommerfeld Model) 58
3.3.2.2 Band Structure Model 60
3.3.2.3 Density of States (DOS) and Partial DOS 62
3.3.2.4 Crystal Field Splitting 64
3.3.2.5 Exchange and Correlation 65
3.3.2.6 Computational Details 66
3.4 Material Classes and Characterization of the Electronic States 67
3.4.1 Metals 67
3.4.2 Semiconductors 68
4.3.1 Intrinsic Defects 99
 4.3.1.1 Frenkel Defects 99
 4.3.1.2 Anti–Frenkel Defects 99
 4.3.1.3 Schottky Defects 100
 4.3.1.4 Anti–Schottky Defects 100
 4.3.1.5 Electron Band Band Transfer 100
4.3.2 Extrinsic Defects 100
 4.3.2.1 Reactions with the Environment 100
 4.3.2.2 The Brouwer Diagram 101
 4.3.2.3 Impurities and Dopants 102
4.4 Space–Charge Effects 103
 4.4.1 Mott Schottky Situation 104
 4.4.2 Gouy Chapman Situation 105
4.5 Case Studies 106
 4.5.1 Titanium Oxide (Rutile) 106
 4.5.1.1 Nominally Pure TiO2 107
 4.5.1.2 Acceptor–Doped TiO2 108
 4.5.1.3 Donor–Doped TiO2 108
 4.5.1.4 The Role of Dislocations 109
 4.5.2 Strontium Titanate 110
 4.5.2.1 Acceptor–Doped SrTiO3 110
 4.5.2.2 Donor–Doped SrTiO3 111
 4.5.2.3 Grain Boundaries in SrTiO3 111
 4.5.3 Zirconium and Hafnium Oxide 113
 4.5.3.1 Zirconium Oxide 113
 4.5.3.2 The Role of Grain Boundaries and Dislocations 115
 4.5.3.3 Hafnium Oxide 116
 4.5.4 Aluminum Oxide 116
 4.5.4.1 Acceptor–Doped Alumina 117
 4.5.4.2 Donor–Doped Alumina 118
 4.5.5 Tantalum Oxide 119
References 121
6.3.2 Electronic Bandwidth 169
6.3.3 Small Polaron Formation 169
6.3.4 Small Polaron Transport 171
6.3.5 Thermopower (Seebeck Coefficient) 172
6.3.6 Hopping Transport via Defect States 172
6.3.7 Bad Metallic Behavior 174
6.4 Band Insulators 175
6.4.1 SnO2: 3d10 System 175
6.4.2 TiO2: 3d0 System 176
6.5 Half-Filled Mott Insulators 177
6.5.1 Correlations and the Hubbard U 177
6.5.2 MnO: 3d5 System 179
6.5.3 NiO: 3d8 System 179
6.5.4 Fe2O3: 3d5 System 182
6.5.5 Summary 184
6.6 Temperature-Induced Metal Insulator Transitions in Oxides 184
6.6.1 Orbitals and Metal Insulator Transitions 184
6.6.2 VO2: 3d1 System 186
6.6.3 Ti2O3: 3d1 System 187
6.6.4 V2O3: 3d2 System 189
6.6.5 Fe3O4: Mixed-Valent System 190
6.6.6 Limitations 191
6.6.7 Summary 192
References 193

7 Quantum Point Contact Conduction 197
Jan van Ruitenbeek, Monica Morales Masis, and Enrique Miranda

7.1 Introduction 197
7.2 Conductance Quantization in Metallic Nanowires 197
7.3 Conductance Quantization in Electrochemical Metallization Cells 204
7.3.1 Current Voltage Characteristics and Definition of Initial Device Resistance 206
7.3.2 Stepwise Conductance Changes in Metallic Filaments 207
7.4 Filamentary Conduction and Quantization Effects in Binary Oxides 210
7.5 Conclusion and Outlook 218
References 218

8 Dielectric Breakdown Processes 225
Jordi Suñé, Nagarajan Raghavan, and K. L. Pey
8.1 Introduction 225
8.2 Basics of Dielectric Breakdown 226
8.3 Physics of Defect Generation 231
8.3.1 Thermochemical Model of Defect Generation 232
8.3.2 Anode Hydrogen Release Model of Defect Generation 233
8.4 Breakdown and Oxide Failure Statistics 235
8.5 Implications of Breakdown Statistics for ReRAM 237
8.6 Chemistry of the Breakdown Path and Inference on Filament Formation 241
8.7 Summary and Conclusions 246
References 247

9 Physics and Chemistry of Nanoionic Cells 253
Ilia Valov and Rainer Waser
9.1 Introduction 253
9.2 Basic Thermodynamics and Heterogeneous Equilibria 254
9.3 Phase Boundaries and Boundary Layers 258
9.3.1 Driving Force for the Formation of Space-Charge Layers 258
9.3.2 Enrichment and Weak Depletion Layers 260
9.3.3 Strong Depletion Layers 261
9.3.4 Nanosize Effects on Space-Charge Regions 263
9.3.5 Nanosize Effects due to Surface Curvature 265
9.3.6 Formation of New Phases at Phase Boundaries 265
9.4 Nucleation and Growth 266
9.4.1 Macroscopic View 266
9.4.2 Atomistic Theory 267
9.5 Electromotive Force 269
9.5.1 Electrochemical Cells of Different Half Cells 269
9.5.2 Emf Caused by Surface Curvature Effects 270
9.5.3 Emf Caused by Concentration Differences 271
9.5.4 Diffusion Potentials 273
13.3.1.2 Microscopic Mechanism of the Switching 371
13.3.2 Physics-Based Electrical Models 372
13.3.2.1 Modeling of the Reset Switching 372
13.3.2.2 Modeling of the Set Switching 373
13.3.3 Model Implications on the Device Level 375
13.3.3.1 CF Size and RLRS Scaling with IC 375
13.3.3.2 I_{reset} Scaling with CF Size Scaling 376
13.3.3.3 Switching Speed 377
13.4 Influence of Oxide and Electrode Materials on Unipolar-Switching Mechanisms 379
13.4.1 Influence of the Oxide Material 380
13.4.1.1 The Specific Case of TiO2 380
13.4.1.2 Influence of the Oxide Microstructure 380
13.4.1.3 Random Circuit Breaker Model 381
13.4.1.4 Coexistence of Bipolar and Unipolar Switching 382
13.4.1.5 Switching Variability and Endurance 383
13.4.2 Impacts and Roles of Electrodes 384
13.4.2.1 Anode-Mediated Reset Operation 384
13.4.2.2 Selection Criteria of Electrode Materials 385
13.5 Conclusion 386
References 387

14 Modeling the VCM- and ECM-Type Switching Kinetics 395
Stephan Menzel and Ji-Hyun Hur
14.1 Introduction 395
14.2 Microscopic Switching Mechanism of VCM Cells 395
14.3 Microscopic Switching Mechanism of ECM Cells 397
14.4 Classification of Simulation Approaches 398
14.4.1 Ab initio and Molecular Dynamics Simulation Models 398
14.4.2 Kinetic Monte Carlo Simulation Models 398
14.4.3 Continuum Models 398
14.4.4 Compact Models 399
14.5 General Considerations of the Physical Origin of the Nonlinear Switching Kinetics 399
14.6 Modeling of VCM Cells 402
18 Atomic Switches 515
Kazuya Terabe, Tohru Tsuruoka, Tsuyoshi Hasegawa, Alpana Nayak, Takeo Ohno, Tomonobu Nakayama, and Masakazu Aono

18.1 Introduction 515
18.1.1 Brief History of the Development of the Atomic Switch 516
18.1.2 Basic Working Principle of the Atomic Switch 517
18.2 Gap-Type Atomic Switches 519
18.2.1 Switching Time 519
18.2.2 Electrochemical Process 521
18.2.3 Cross-Bar Structure 523
18.2.4 Quantized Conductance 524
18.2.5 Logic-Gate Operation 526
18.2.6 Synaptic Behavior 527
18.2.7 Photo-Assisted Switch 528
18.3 Gapless-Type Atomic Switches 529
18.3.1 Sulfide-Based Switch 529
18.3.2 Oxide-Based Switch 530
18.3.3 Effect of Moisture 533
18.3.4 Switching Time 534
18.3.5 Quantized Conductance and Synaptic Behavior 535
18.3.6 Polymer-Based Switch 536
18.4 Three-Terminal Atomic Switches 537
18.4.1 Filament-Growth-Controlled Type 537
18.4.2 Nucleation-Controlled Type 539
18.5 Summary 541

References 542

19 Scaling Limits of Nanoionic Devices 547
Victor Zhirnov and Gurtej Sandhu

19.1 Introduction 547
19.2 Basic Operations of ICT Devices 547
22.4.2.1 Oxide PN Junction 631
22.4.2.2 Metal–Oxide Schottky Barrier 632
22.4.3 Threshold Switch 633
22.4.3.1 Ovonic Threshold Switching 634
22.4.3.2 Metal–Insulator Transition (MIT) 636
22.4.3.3 Threshold Vacuum Switch 637
22.4.4 Oxide Tunnel Barrier 638
22.4.4.1 Single Layer Oxide–(Nitride–)Based Select Device (TiO2 and SiNx) 638
22.4.4.2 Multi–Layer Oxide–Based Select Device (TaOx/TiO2/TaOx) 638
22.4.5 Mixed–Ionic–Electronic–Conduction (MIEC) 639
22.5 Self–Selected Resistive Memory 643
22.5.1 Complementary Resistive Switch 645
22.5.2 Hybrid ReRAM–Select Devices 647
22.5.3 Nonlinear ReRAM 649
22.6 Conclusion 651

References 652

23 Bottom–Up Approaches for Resistive Switching Memories 661
Sabina Spiga, Takeshi Yanagida, and Tomoji Kawai

23.1 Introduction 661
23.2 Bottom–Up ReRAM Fabrication Methods 662
23.2.1 Vapor–Liquid–Solid Method 662
23.2.2 Template–Assisted Fabrication Methods of NWs 663
23.3 Resistive Switching in Single (All–Oxide) NW/Nanoisland ReRAM 664
23.3.1 Resistive Switching in Single NiO NWs and Nanoislands 665
23.3.2 Resistive Switching in Oxide NWs Alternative to NiO 669
23.3.3 Study of Switching Mechanisms in Oxide NWReRAM 671
23.3.4 Resistive Switching in NWReRAM with Active Electrodes: ECM Mechanisms 675
23.4 Resistive Switching in Axial Heterostructured NWs 678
23.5 Core–Shell NWs toward Crossbar Architectures 680
23.5.1 Crossbar Devices with Si(core)/a–Si(shell) NWs and Ag Electrodes 681
23.5.2 Crossbar Devices with Ni(core)/NiO(shell) NWs and Ni Electrodes 683
23.6 Emerging Bottom–Up Approaches and Applications 686
25.5 Scaling in Neuromorphic ReRAM Architectures 728

25.6 Applications of Neuromorphic ReRAM Architectures 729

References 731

Index 737

Order by Fax - using the form below

Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit
http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

Product Name: Resistive Switching. From Fundamentals of Nanoionic Redox Processes to Memristive Device Applications
Web Address: http://www.researchandmarkets.com/reports/3329291/
Office Code: SCH3BVTG

Product Format
Please select the product format and quantity you require:

Quantity
Hard Copy (Hard Back): USD 164 + USD 29 Shipping/Handling

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title: Mr ☐ Mrs ☐ Dr ☐ Miss ☐ Ms ☐ Prof ☐
First Name: ___________________________ Last Name: ___________________________
Email Address: * ___________________________
Job Title: ___________________________
Organisation: ___________________________
Address: ___________________________
City: ___________________________
Postal / Zip Code: ___________________________
Country: ___________________________
Phone Number: ___________________________
Fax Number: ___________________________

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code:

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World