Resistive Switching. From Fundamentals of Nanoionic Redox Processes to Memristive Device Applications

Description:
With its comprehensive coverage, this reference introduces readers to the wide topic of resistance switching, providing the knowledge, tools, and methods needed to understand, characterize and apply resistive switching memories.

Starting with those materials that display resistive switching behavior, the book explains the basics of resistive switching as well as switching mechanisms and models. An in-depth discussion of memory reliability is followed by chapters on memory cell structures and architectures, while a section on logic gates rounds off the text.

An invaluable self-contained book for materials scientists, electrical engineers and physicists dealing with memory research and development.

Contents:
Preface XIX
List of Contributors XXI

1 Introduction to Nanoionic Elements for Information Technology 1
 Rainer Waser, Daniele Ielmini, Hiro Akinaga, Hisashi Shima, H.-S. Philip Wong, Joshua J. Yang, and Simon Yu
 1.1 Concept of Two-Terminal Memristive Elements 1
 1.1.1 Classifications Based on Behavior, Mechanisms, and Operation Modes 1
 1.1.2 Scope of the Book 6
 1.1.3 History 9
 1.2 Memory Applications 12
 1.2.1 Performance Requirements and Parameter Windows 12
 1.2.2 Device Isolation in Crossbar Arrays 16
 1.2.3 3-D Technology 19
 1.2.4 Memory Hierarchy 20
 1.3 Logic Circuits 21
 1.4 Prospects and Challenges 24
 Acknowledgments 25

References 25

2 ReRAM Cells in the Framework of Two-Terminal Devices 31
 E. Linn, M. Di Ventra, and Y. V. Pershin
 2.1 Introduction 31
 2.2 Two-Terminal Device Models 32
 2.2.1 Lumped Elements 32
2.2.2 Ideal Circuit Element Approach 32
2.2.3 Dynamical Systems Approach 33
2.2.3.1 Memristive Systems 33
2.2.3.2 Memristor 34
2.2.4 Significance of the Initial Memristor and Memristive System Definitions in the Light of Physics 34
2.2.4.1 Limitations of Ideal Memristor Models 35
2.2.5 Memristive, Memcapacitive, and Meminductive Systems 35
2.2.6 ReRAM: Combination of Elements, Combination of Memory Features, and Consideration of Inherent Battery Effects 36

2.3 Fundamental Description of Electronic Devices with Memory 38
2.4 Device Engineer's View on ReRAM Devices as Two-Terminal Elements 40
2.4.1 Modeling of Electrochemical Metallization (ECM) Devices 41
2.4.2 Modeling of Valence Change Mechanism (VCM) Devices 43
2.5 Conclusions 46

Acknowledgment 47

References 47

3 Atomic and Electronic Structure of Oxides 49
Tobias Zacherle, Peter C. Schmidt, and Manfred Martin

3.1 Introduction 49
3.2 Crystal Structures 50
3.3 Electronic Structure 54
3.3.1 From Free Atoms to the Solid State 55
3.3.2 Electrons in Crystals 58
3.3.2.1 Free Electron Model (Sommerfeld Model) 58
3.3.2.2 Band Structure Model 60
3.3.2.3 Density of States (DOS) and Partial DOS 62
3.3.2.4 Crystal Field Splitting 64
3.3.2.5 Exchange and Correlation 65
3.3.2.6 Computational Details 66
3.4 Material Classes and Characterization of the Electronic States 67
3.4.1 Metals 67
3.4.2 Semiconductors 68
3.4.3 Insulators 71
3.4.4 Point Defect States 72
3.4.5 Surface States 73
3.4.6 Amorphous States 75
3.5 Electronic Structure of Selected Oxides 76
3.5.1 Nontransition Metal Oxides 76
3.5.1.1 Al₂O₃ 76
3.5.1.2 SrO 77
3.5.1.3 ZnO 77
3.5.2 Titanates 79
3.5.2.1 TiO 79
3.5.2.2 Ti₂O₃ 79
3.5.2.3 TiO₂ 81
3.5.2.4 SrTiO₃ 82
3.5.3 Magnetic Insulators 82
3.5.3.1 NiO 84
3.5.3.2 MnO 85
3.5.4 MVB Metal Oxides 86
3.5.4.1 Metal Insulator Transitions: NbO₂, VO₂, and V₂O₃ 86
3.5.4.2 Tantalum Oxides TaOₓ 87
3.6 Ellingham Diagram for Binary Oxides 90
Acknowledgments 91
References 91
4 Defect Structure of Metal Oxides 95
4.1 Definition of Defects 95
4.1.1 Zero–Dimensional Defects 95
4.1.2 One–Dimensional Defects 95
4.1.3 Two–Dimensional Defects 97
4.1.4 Three–Dimensional Defects 97
4.2 General Considerations on the Equilibrium Thermodynamics of Point Defects 98
4.3 Definition of Point Defects 99
4.3.1 Intrinsic Defects 99
4.3.1.1 Frenkel Defects 99
4.3.1.2 Anti-Frenkel Defects 99
4.3.1.3 Schottky Defects 100
4.3.1.4 Anti-Schottky Defects 100
4.3.1.5 Electron Band Band Transfer 100
4.3.2 Extrinsic Defects 100
4.3.2.1 Reactions with the Environment 100
4.3.2.2 The Brouwer Diagram 101
4.3.2.3 Impurities and Dopants 102
4.4 Space-Charge Effects 103
4.4.1 Mott Schottky Situation 104
4.4.2 Gouy Chapman Situation 105
4.5 Case Studies 106
4.5.1 Titanium Oxide (Rutile) 106
4.5.1.1 Nominally Pure TiO2 107
4.5.1.2 Acceptor-Doped TiO2 108
4.5.1.3 Donor-Doped TiO2 108
4.5.1.4 The Role of Dislocations 109
4.5.2 Strontium Titanate 110
4.5.2.1 Acceptor-Doped SrTiO3 110
4.5.2.2 Donor-Doped SrTiO3 111
4.5.2.3 Grain Boundaries in SrTiO3 111
4.5.3 Zirconium and Hafnium Oxide 113
4.5.3.1 Zirconium Oxide 113
4.5.3.2 The Role of Grain Boundaries and Dislocations 115
4.5.3.3 Hafnium Oxide 116
4.5.4 Aluminum Oxide 116
4.5.4.1 Acceptor-Doped Alumina 117
4.5.4.2 Donor-Doped Alumina 118
4.5.5 Tantalum Oxide 119
References 121
5 Ion Transport in Metal Oxides 125
Roger A. De Souza

5.1 Introduction 125
5.2 Macroscopic Definition 126
5.2.1 Two Solutions of the Diffusion Equation 127
5.2.2 Dependence of the Diffusion Coefficient on Characteristic Thermodynamic Parameters 128
5.3 Microscopic Definition 129
5.3.1 Mechanisms of Diffusion 130
5.3.2 Diffusion Coefficients of Defects and Ions 131
5.3.3 The Activation Barrier for Migration 132
5.4 Types of Diffusion Experiments 134
5.4.1 Chemical Diffusion 135
5.4.2 Tracer Diffusion 137
5.4.3 Conductivity 139
5.5 Mass Transport along and across Extended Defects 141
5.5.1 Accelerated Transport along Extended Defects 143
5.5.2 Hindered Transport across Extended Defects 145
5.6 Case Studies 145
5.6.1 Strontium Titanate 147
5.6.2 Yttria–Stabilized Zirconia (YSZ) 150
5.6.3 Alumina 153
5.6.4 Tantalum Pentoxide 155
Acknowledgments 156

References 157

6 Electrical Transport in Transition Metal Oxides 165
Franklin J. Wong and Shriram Ramanathan

6.1 Overview 165
6.2 Structure of Transition Metal Oxides 166
6.2.1 Crystal Structures of Oxides 166
6.2.2 Bonding and Electronic Structure 167
6.3 Models of Electrical Transport 168
6.3.1 Band Transport of Carriers 168
6.3.2 Electronic Bandwidth 169
6.3.3 Small Polaron Formation 169
6.3.4 Small Polaron Transport 171
6.3.5 Thermopower (Seebeck Coefficient) 172
6.3.6 Hopping Transport via Defect States 172
6.3.7 Bad Metallic Behavior 174
6.4 Band Insulators 175
6.4.1 SnO2: 3d10 System 175
6.4.2 TiO2: 3d0 System 176
6.5 Half-Filled Mott Insulators 177
6.5.1 Correlations and the Hubbard U 177
6.5.2 MnO: 3d5 System 179
6.5.3 NiO: 3d8 System 179
6.5.4 Fe2O3: 3d5 System 182
6.5.5 Summary 184
6.6 Temperature-Induced Metal Insulator Transitions in Oxides 184
6.6.1 Orbitals and Metal Insulator Transitions 184
6.6.2 VO2: 3d1 System 186
6.6.3 Ti2O3: 3d1 System 187
6.6.4 V2O3: 3d2 System 189
6.6.5 Fe3O4: Mixed-Valent System 190
6.6.6 Limitations 191
6.6.7 Summary 192

References 193
7 Quantum Point Contact Conduction 197
Jan van Ruitenbeek, Monica Morales Masis, and Enrique Miranda
7.1 Introduction 197
7.2 Conductance Quantization in Metallic Nanowires 197
7.3 Conductance Quantization in Electrochemical Metallization Cells 204
7.3.1 Current Voltage Characteristics and Definition of Initial Device Resistance 206
7.3.2 Stepwise Conductance Changes in Metallic Filaments 207
7.4 Filamentary Conduction and Quantization Effects in Binary Oxides 210
7.5 Conclusion and Outlook 218

References 218

8 Dielectric Breakdown Processes 225
Jordi Suñé, Nagarajan Raghavan, and K. L. Pey

8.1 Introduction 225

8.2 Basics of Dielectric Breakdown 226

8.3 Physics of Defect Generation 231

8.3.1 Thermochemical Model of Defect Generation 232

8.3.2 Anode Hydrogen Release Model of Defect Generation 233

8.4 Breakdown and Oxide Failure Statistics 235

8.5 Implications of Breakdown Statistics for ReRAM 237

8.6 Chemistry of the Breakdown Path and Inference on Filament Formation 241

8.7 Summary and Conclusions 246

References 247

9 Physics and Chemistry of Nanoionic Cells 253
Ilia Valov and Rainer Waser

9.1 Introduction 253

9.2 Basic Thermodynamics and Heterogeneous Equilibria 254

9.3 Phase Boundaries and Boundary Layers 258

9.3.1 Driving Force for the Formation of Space-Charge Layers 258

9.3.2 Enrichment and Weak Depletion Layers 260

9.3.3 Strong Depletion Layers 261

9.3.4 Nanosize Effects on Space-Charge Regions 263

9.3.5 Nanosize Effects due to Surface Curvature 265

9.3.6 Formation of New Phases at Phase Boundaries 265

9.4 Nucleation and Growth 266

9.4.1 Macroscopic View 266

9.4.2 Atomistic Theory 267

9.5 Electromotive Force 269

9.5.1 Electrochemical Cells of Different Half Cells 269

9.5.2 Emf Caused by Surface Curvature Effects 270

9.5.3 Emf Caused by Concentration Differences 271

9.5.4 Diffusion Potentials 273
9.6 General Transport Processes and Chemical Reactions 274
9.7 Solid–State Reactions 275
9.8 Electrochemical (Electrode) Reactions 280
9.8.1 Charge–Transfer Process Limitations 280
9.8.2 Diffusion–Limited Electrochemical Processes 282
9.9 Stoichiometry Polarization 283
Summary 285
Acknowledgments 286
References 286

10 Electroforming Processes in Metal Oxide Resistive–Switching Cells 289
Doo Seok Jeong, Byung Joon Choi, and Cheol Seong Hwang
10.1 Introduction 289
10.1.1 Forming Methods 290
10.1.2 Dependence of the Bipolar Switching Behavior on the Forming Conditions 291
10.1.3 Factors Influencing Forming Behavior 294
10.1.4 Forming in Bipolar and Unipolar Switching 295
10.1.5 Phenomenological Understanding of Forming 297
10.2 Forming Mechanisms 297
10.2.1 Early Suggested Forming Mechanisms 298
10.2.2 Conducting Filament Formation 298
10.2.3 Redox Reactions and Ion or Ionic Defect Migration during Forming 300
10.2.4 Point Defect Introduction 302
10.2.5 Point Defect Dynamics during the Forming Process 304
10.2.6 Microscopic Evidence for CF Formation during Forming 308
10.3 Technical Issues Related to Forming 310
10.3.1 Problems of Current Overshoot Forming 310
10.3.2 Nonuniform Forming Voltage Distribution 311
10.3.3 Forming–Free Resistive Switching 311
10.4 Summary and Outlook 312
Acknowledgments 313
References 313

11 Universal Switching Behavior 317
13.3.1.2 Microscopic Mechanism of the Switching 371
13.3.2 Physics-Based Electrical Models 372
13.3.2.1 Modeling of the Reset Switching 372
13.3.2.2 Modeling of the Set Switching 373
13.3.3 Model Implications on the Device Level 375
13.3.3.1 CF Size and RLRS Scaling with IC 375
13.3.3.2 Ireset Scaling with CF Size Scaling 376
13.3.3.3 Switching Speed 377
13.4 Influence of Oxide and Electrode Materials on Unipolar-Switching Mechanisms 379
13.4.1 Influence of the Oxide Material 380
13.4.1.1 The Specific Case of TiO2 380
13.4.1.2 Influence of the Oxide Microstructure 380
13.4.1.3 Coexistence of Bipolar and Unipolar Switching 382
13.4.1.4 Switching Variability and Endurance 383
13.4.2 Impacts and Roles of Electrodes 384
13.4.2.1 Anode–Mediated Reset Operation 384
13.4.2.2 Selection Criteria of Electrode Materials 385
13.5 Conclusion 386
References 387
14 Modeling the VCM– and ECM–Type Switching Kinetics 395
Stephan Menzel and Ji-Hyun Hur
14.1 Introduction 395
14.2 Microscopic Switching Mechanism of VCM Cells 395
14.3 Microscopic Switching Mechanism of ECM Cells 397
14.4 Classification of Simulation Approaches 398
14.4.1 Ab initio and Molecular Dynamics Simulation Models 398
14.4.2 Kinetic Monte Carlo Simulation Models 398
14.4.3 Continuum Models 399
14.4.4 Compact Models 399
14.5 General Considerations of the Physical Origin of the Nonlinear Switching Kinetics 399
14.6 Modeling of VCM Cells 402
14.6.1 Ab initio Models and MD Models 402
14.6.1.1 HRS and LRS State Modeling 402
14.6.1.2 Electron Transfer 404
14.6.1.3 Phase Transformations and Nucleation 405
14.6.1.4 Calculation of Migration Barriers 406
14.6.2 Kinetic Monte Carlo Modeling 407
14.6.3 Continuum Modeling 410
14.6.4 Compact Modeling 417
14.7 Modeling of ECM Cells 422
14.7.1 Ab initio Models and MD Models 422
14.7.2 KMC Modeling 423
14.7.3 Continuum Modeling 426
14.7.4 Compact Modeling 428
14.8 Summary and Outlook 431
Acknowledgment 433
References 433

15 Valence Change Observed by Nanospectroscopy and Spectromicroscopy 437
Christian Lenser, Regina Dittmann, and John Paul Strachan
15.1 Introduction 437
15.2 Methods and Techniques 439
15.3 Interface Phenomena 442
15.3.1 Reactive Metal Layers on Insulating Oxides 442
15.3.2 Formation of a Blocking Layer on Conducting Oxides 443
15.3.3 Electrically Induced Redox Reactions at the Interface 444
15.4 Localized Redox Reactions in Transition Metal Oxides 446
15.4.1 Single Crystalline Model System Doped SrTiO3 446
15.4.2 Localized Structural and Compositional Changes in TiO2 448
15.4.3 Compositional Changes in Ta2O5 and HfO2 450
15.5 Conclusions 453
Acknowledgment 453
References 453

16 Interface-Type Switching 457
16.1 Introduction 457
16.2 Metal/Conducting Oxide Interfaces: I–V Characteristics and Fundamentals 459
 16.2.1 Schottky–Like Metal/Conducting Oxide Interfaces 459
 16.2.2 Electronic Properties of Donor–Doped SrTiO3 460
 16.2.3 Electronic Properties of Mixed-Valent Manganites 461
16.3 Resistive Switching of Metal/Donor–Doped SrTiO3 Cells 463
16.4 Resistive Switching of p-Type PCMO Cells 465
16.5 Resistive Switching in the Presence of a Tunnel Barrier 469
 16.5.1 Device Structure and Materials 469
 16.5.2 Electrical Characteristics 470
 16.5.3 Mechanism and Modeling 472
 16.5.4 Passive Cross-Point Arrays 473
16.6 Ferroelectric Resistive Switching 475
 16.6.1 Classification of Ferroelectric Resistive Switching 475
 16.6.2 Ferroelectric Resistive-Switching Diode 475
16.7 Summary 479
Acknowledgment 480
References 480
17 Electrochemical Metallization Memories 483
 Michael N. Kozicki, Maria Mitkova, and Ilia Valov
 17.1 Introduction 483
 17.2 Metal Ion Conductors 484
 17.2.1 Materials 484
 17.2.2 Ion Transport 490
 17.3 Electrochemistry of CBRAM (ECM) Cells 492
 17.3.1 Fundamental Processes 492
 17.3.2 Filament Growth and Dissolution 495
 17.3.3 Filament Morphology 500
 17.4 Devices 503
 17.4.1 Device Operation 503
 17.4.2 Memory Arrays 506
18 Atomic Switches 515
Kazuya Terabe, Tohru Tsuruoka, Tsuyoshi Hasegawa, Alpana Nayak, Takeo Ohno, Tomonobu Nakayama, and Masakazu Aono

18.1 Introduction 515

18.1.1 Brief History of the Development of the Atomic Switch 516

18.1.2 Basic Working Principle of the Atomic Switch 517

18.2 Gap–Type Atomic Switches 519

18.2.1 Switching Time 519

18.2.2 Electrochemical Process 521

18.2.3 Cross–Bar Structure 523

18.2.4 Quantized Conductance 524

18.2.5 Logic–Gate Operation 526

18.2.6 Synaptic Behavior 527

18.2.7 Photo–Assisted Switch 528

18.3 Gapless–Type Atomic Switches 529

18.3.1 Sulfide–Based Switch 529

18.3.2 Oxide–Based Switch 530

18.3.3 Effect of Moisture 533

18.3.4 Switching Time 534

18.3.5 Quantized Conductance and Synaptic Behavior 535

18.3.6 Polymer–Based Switch 536

18.4 Three–Terminal Atomic Switches 537

18.4.1 Filament–Growth–Controlled Type 537

18.4.2 Nucleation–Controlled Type 539

18.5 Summary 541

References 542

19 Scaling Limits of Nanoionic Devices 547
Victor Zhirnov and Gurtej Sandhu

19.1 Introduction 547

19.2 Basic Operations of ICT Devices 547
19.3 Minimal Nanoionic ICT 549
19.3.1 Switching Mechanisms and the Material Systems 549
19.3.2 Atomic Filament: Classical and Quantum Resistance 551
19.3.2.1 Classical Resistance 551
19.3.2.2 Quantum Resistance 552
19.3.2.3 Conductance in the Presence of Barriers 553
19.3.2.4 Barriers in Atomic Gaps: Nonrectangular Barrier 555
19.3.2.5 Transmission through Atomic Gaps 555
19.3.3 Interface Controlled Resistance (ICR) 556
19.3.3.1 Electrical Properties of Material Interfaces 557
19.3.3.2 Contact Resistance in a M S (M I) Structure 560
19.3.4 Stability of the Minimal Nanoionic State 563
19.4 Energetics of Nanoionic Devices 565
19.4.1 Switching Speed and Energy 565
19.4.2 Heat Dissipation and Transfer in a Minimal Nanoionic Device 567
19.5 Summary 569
Acknowledgment 569
Appendix A Physical Origin of the Barrier Potential 569
References 571

20 Integration Technology and Cell Design 573
Fred Chen, Jun Y. Seok, and Cheol S. Hwang

20.1 Materials 573
20.1.1 Resistance Switching (RS) Materials 573
20.1.1.1 Insulating Oxides 573
20.1.1.2 Semiconducting Oxides 574
20.1.1.3 Electrolyte Chalcogenides 574
20.1.1.4 Phase–Change Materials 575
20.1.2 Electrode Materials, Including Reductants 575
20.2 Structures 576
20.2.1 Planar Stack 576
20.2.2 Sidewall–Conforming Stack 577
20.2.3 Lateral Structure 578
20.3 Integration Architectures 579
 20.3.1 Transistor in Series with RRAM (1T1R) 579
 20.3.2 Transistor in Parallel with RRAM (T|R) 582
 20.3.3 1S1R Stacked Crosspoint 583
 20.3.3.1 The Selector Device 583
 20.3.3.2 Sensing Margin 584
 20.3.3.3 Write Margin 586
 20.3.3.4 Cumulative Line Resistance 586
 20.3.4 Through-Multilayer via Array 588
 20.3.4.1 Through-Multilayer Vias 588
 20.3.4.2 Staircase Connections 589
 20.3.4.3 Horizontal Electrodes 589
 20.3.4.4 Bathtub-Type Peripheral Connection 592
 20.3.5 Array Area Efficiency 592
 20.4 Conclusions 593

Acknowledgment 594

References 594

21 Reliability Aspects 597
Dirk J. Wouters, Yang-Yin Chen, Andrea Fantini, and Nagarajan Raghavan

21.1 Introduction 597
21.2 Endurance (Cyclability) 598
 21.2.1 Endurance Summary of Bipolar Switching TMO RRAM 598
 21.2.2 Balancing the Bipolar Switching for Better Endurance 599
 21.2.3 Understanding of Endurance Degradation 600
21.3 Retention 601
 21.3.1 Retention Summary of Bipolar TMO RRAM 601
 21.3.2 Understanding of Retention Degradation in Bipolar TMO RRAM 603
 21.3.3 Trade-Off between Retention/Endurance 604
21.4 Variability 605
 21.4.1 Introduction 605
 21.4.2 Experimental Aspects of Variability 605
 21.4.2.1 Variability of Forming Operation 605
21.4.2.2 Intrinsic and Extrinsic Variability 606
21.4.3 Physical Aspects of Variability 607
21.4.3.1 Variability in Unipolar Devices 607
21.4.3.2 Variability in Bipolar Devices 607
21.5 Random Telegraph Noise (RTN) 609
21.5.1 Introduction 609
21.5.2 Charge Carrier Transport–Induced RTN 610
21.5.3 Oxygen Vacancy Transport–Induced RTN 611
21.5.3.1 Experimental Identification of Vacancy Perturbations 611
21.5.3.2 Vacancy–Induced RTN for Shallow to Moderate Reset 612
21.5.3.3 Vacancy–Induced RTN for Very Deep Reset 613
21.5.3.4 Bimodal Filament Configuration and Disturb Immunity 614
21.5.3.5 Role of Dielectric Microstructure on RTN Immunity 614
21.5.4 Summary of RTN Analysis Studies 615
21.6 Disturb 615
21.6.1 Phenomena 615
21.6.2 Understanding and Modeling 616
21.6.3 Anomalous Disturb Behavior 616
21.7 Conclusions and Outlook 617
Acknowledgment 618

References 618

22 Select Device Concepts for Crossbar Arrays 623
Geoffrey W. Burr, Rohit S. Shenoy, and Hyunsang Hwang
22.1 Introduction 623
22.2 Crossbar Array Considerations 624
22.2.1 Problems Associated with Large Subarrays 625
22.2.2 Considerations During NVM–Write 625
22.2.3 Considerations During NVM–Read 627
22.3 Target Specifications for Select Devices 627
22.4 Types of Select Devices 629
22.4.1 Si Based 629
22.4.2 Oxide Diodes 631
22.4.2.1 Oxide PN Junction 631
22.4.2.2 Metal-Oxide Schottky Barrier 632
22.4.3 Threshold Switch 633
22.4.3.1 Ovonic Threshold Switching 634
22.4.3.2 Metal Insulator Transition (MIT) 636
22.4.3.3 Threshold Vacuum Switch 637
22.4.4 Oxide Tunnel Barrier 638
22.4.4.1 Single Layer Oxide-(Nitride-)Based Select Device (TiO2 and SiNx) 638
22.4.4.2 Multi-Layer Oxide-Based Select Device (TaOx/TiO2/TaOx) 638
22.4.5 Mixed-Ionic-Electronic-Conduction (MIEC) 639
22.5 Self-Selected Resistive Memory 643
22.5.1 Complementary Resistive Switch 645
22.5.2 Hybrid ReRAM-Select Devices 647
22.5.3 Nonlinear ReRAM 649
22.6 Conclusion 651

References 652

23 Bottom-Up Approaches for Resistive Switching Memories 661
Sabina Spiga, Takeshi Yanagida, and Tomoji Kawai
23.1 Introduction 661
23.2 Bottom-Up ReRAM Fabrication Methods 662
23.2.1 Vapor Liquid Solid Method 662
23.2.2 Template-Assisted Fabrication Methods of NWs 663
23.3 Resistive Switching in Single (All-Oxide) NW/Nanoisland ReRAM 664
23.3.1 Resistive Switching in Single NiO NWs and Nanoislands 665
23.3.2 Resistive Switching in Oxide NWs Alternative to NiO 669
23.3.3 Study of Switching Mechanisms in Oxide NWReRAM 671
23.3.4 Resistive Switching in NWReRAM with Active Electrodes: ECM Mechanisms 675
23.4 Resistive Switching in Axial Heterostructured NWs 678
23.5 Core Shell NWs toward Crossbar Architectures 680
23.5.1 Crossbar Devices with Si(core)/a-Si(shell) NWs and Ag Electrodes 681
23.5.2 Crossbar Devices with Ni(core)/NiO(shell) NWs and Ni Electrodes 683
23.6 Emerging Bottom-Up Approaches and Applications 686
23.6.1 1D1R Nanopillar Array 686
23.6.2 Block–Copolymer Self–Assembly for Advanced ReRAM 687
23.7 Conclusions 688
References 689

24 Switch Application in FPGA 695
Toshitsugu Sakamoto, S. Simon Wong, and Young Yang Liauw

24.1 Introduction 695
24.2 Monolithically 3D FPGA with BEOL Devices 696
24.3 Resistive Memory Replacing Configuration Memory 698
24.3.1 Architecture 698
24.4 Resistive Configuration Memory Cell 699
24.5 Resistive Configuration Memory Array 700
24.5.1 Prototype 702
24.5.2 Measurement Results 703
24.6 Complementary Atomic Switch Replacing Configuration Switch 706
24.6.1 Complementary Atomic Switch (CAS) 706
24.6.2 Cell Architecture with CAS 707
24.6.3 Demonstration of CAS–Based Programmable Logic 709
24.7 Energy Efficiency of Programmable Logic Accelerator 710
24.8 Conclusion and Outlook 712
References 712

25 ReRAM–Based Neuromorphic Computing 715
Giacomo Indiveri, Eike Linn, and Stefano Ambrogio

25.1 Neuromorphic Systems: Past and Present Approaches 715
25.2 Neuromorphic Engineering 715
25.3 Neuromorphic Computing (The Present) 716
25.4 Neuromorphic ReRAM Approaches (The Future) 718
25.4.1 ReRAM–Based Neuromorphic Approaches 718
25.4.2 Nonvolatility and Volatility of Resistive States 721
25.4.3 Nonlinear Switching Kinetics 722
25.4.4 Multilevel Resistance Behavior 722
25.4.5 Capacitive Properties 725
25.4.6 Switching Statistics 725
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

- **Product Name:** Resistive Switching. From Fundamentals of Nanoionic Redox Processes to Memristive Device Applications
- **Web Address:** http://www.researchandmarkets.com/reports/3329291/
- **Office Code:** SCBR2HBO

Product Format
Please select the product format and quantity you require:

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Hard Copy (Hard Back):</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>USD 165 + USD 29 Shipping/Handling</td>
</tr>
</tbody>
</table>

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in **BLOCK CAPITALS**

<table>
<thead>
<tr>
<th>Title: Mr [] Mrs [] Dr [] Miss [] Ms [] Prof []</th>
<th>First Name:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>__________________</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Email Address: *</th>
<th>Last Name:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>__________________</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Organisation:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>__________________</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Address:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>__________________</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>City:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>__________________</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Postal / Zip Code:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>__________________</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Country:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>__________________</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Phone Number:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>__________________</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fax Number:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>__________________</td>
</tr>
</tbody>
</table>

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: _______________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World