
Description: This is the 3rd edition of the Towers and Poles Report. The report sizes demand for electricity transmission towers and utility poles in base year 2014 and forecasts demand from 2015 to 2020.

Towers and poles are vital components of overhead transmission and distribution networks. Between them they constitute a market worth over $28 billion annually. Large towers can be the most expensive element of complex high voltage systems. The basic utility pole can be relatively cheap, but with nearly 1½ billion of them around the world, they amount to a large and often overlooked market, for poles and wood protection products and services.

The report analyses the $17 billion global market for electricity transmission towers and the $11 billion market for utility poles at ex factory prices in 2015.

The report provides a detailed analysis of the installed base of each category, and demand in volume and $ value. The report forecasts future market demand from 2015 to 2020 in volume and value.

Demand for utility poles is heavily dependent on replacement, which accounted for 62% of the market in 2015. Service lives vary from as little as 5 years in some African regions to over 100 years in other countries. This has been surveyed and is an essential metric of the demand projections.

The report provides market and infrastructure data with global figures, totals for each region and every country.

The report contains 137 pages, 82 charts and 57 tables.

Contents:

Executive Summary
Drivers of growth for steel transmission towers
Utility Poles

1. INSTALLED BASE OF ELECTRICITY TRANSMISSION TOWERS & POLES
1.1 Global installed base of towers
1.2 North America
1.3 Europe
1.4 CIS
1.5 Middle East
1.6 Africa
1.7 Asia Pacific
1.8 LAC

2. ELECTRICITY TRANSMISSION TOWERS MARKET
2.1 Global demand for towers
2.2 North America
2.3 Europe
2.4 CIS
2.5 Middle East
2.6 Africa
2.7 Asia Pacific
2.8 LAC

3. LONG TERM DEMAND CYCLES FOR ELECTRICITY TOWERS
Growth of transmission line networks

4. TYPES OF TOWER OR PYLONS
4.1 Suspension tower
4.2 TENSION TOWERS
4.3 ANGLE SUSPENSION TOWER
4.4 Termination or dead end towers, also called tension towers
4.5 Transposition towers
4.6 Tower Installation
4.6.1 Build-up or Piecemeal method.
4.6.2 Section method
4.6.3 Ground assembly method
4.6.4 Helicopter method.
4.7 TRANSMISSION TOWERS DESIGN

5. UTILITY POLE INSTALLED BASE
5.1 INSTALLED BASE
5.2 Growth of the pole population
5.3 Installed base of poles by country and utility
5.3.1 North America
Table 32: Installed base of poles by country and utility, Central America, 2015

6. DEMAND FOR UTILITY POLES
6.1 Demand in numbers of poles
6.2 Demand for poles by value

7. NATIONAL MARKETS
7.1 United States
7.2 Europe
7.3 Austria
7.4 Czech Republic
7.5 Cyprus
7.6 Finland
7.7 France
7.8 Germany
7.9 Greece
7.10 Ireland
7.11 Netherlands
7.12 Norway
7.13 Spain
7.14 Sweden
7.15 Switzerland
7.16 United Kingdom:
7.17 Russia
7.18 Japan
7.19 China
7.20 India
7.21 Korea
7.22 Singapore and Macau
7.23 Australia
7.24 Middle East
7.25 Africa

8. MATERIAL COMPOSITION OF POLES AND SERVICE LIFE
8.1 Materials
8.2 Use
8.3 Description
8.4 Size classification
HS - H1
1-5
6-10
8.5 Wood
8.5.1 Wood preservatives
8.5.2 Pollution from wood preservatives - Leaching
8.6 Steel
8.7 Concrete
8.9 Composites - fibreglass
8.10 Disposal
9. POLE SPAN

10. TYPES OF POLES
10.1 Other equipment
10.2 Grounding Rod
10.3 Dead-end (anchor or termination) poles
10.4 Physical access
10.5 Construction Classifications

11. SPACE ALLOCATION ON JOINT USE UTILITY POLES
11.1 Safety Zone Space
11.2 Communications Space

12. SERVICE LIFE AND MAINTENANCE OF STEEL TOWERS AND POLES
12.1 Service Life
12.2 Maintenance
Phase 1 - Coffee Stain Rust
Phase 2 - Abrasive Rust
Phase 3 - Extensive Abrasive Rust
Phase 4 - Crash

13. SERVICE LIFE AND MAINTENANCE OF WOODEN POLES
13.1 Service life
13.2 Maintenance
13.2.1 Groundline Treatment
13.2.2 Internal Treatment
13.3 CONCRETE POLES

14. ELECTRIC RAILWAYS
14.1 OVERVIEW OF CURRENT NETWORKS
14.2 Traction systems
14.3 MARKET SIZE FOR POLES AND PYLONS IN THE ELECTRIC RAILWAY INDUSTRY

15.1 MANUFACTURERS OF STEEL TRANSMISSION TOWERS
15.1.1 KEC International
15.1.2 Chinese manufacturers
15.1.3 Other Asian manufacturers
15.1.4 North American manufacturers
15.2 MANUFACTURERS OF DISTRIBUTION POLES
15.2.1 North American manufacturers
15.2.2 African manufacturers
15.2.3 Indian manufacturers

16. CIRCUIT PHASES AND CONDUCTORS
16.1 SINGLE CIRCUIT
16.2 DOUBLE CIRCUIT
16.3 MULTIPLE CONDUCTORS
16.4 RESTRICTIONS ON MULTIPLE USE OF CORRIDORS

17. COMPETITIONS FOR TOWER DESIGN
17. RIGHTS OF WAY
Multiple use of ROWs

18. DANGER TO AND FROM BIRDS
18.1 EXTENT OF THE PROBLEM
18.2 The mechanics of an electrocution
18.2.1 Mitigation and Prevention of Collisions
18.2.2 Mitigation and Prevention of Electrocution

List of Figures:
Figure 1: Global installed electricity transmission towers, 2014-2020
Figure 2: Global installed electricity transmission towers by regions, 2015
Figure 3: Regional growth in electricity transmission towers, 2013-2020
Figure 4: Global installed electricity transmission towers, North America, 2014
Figure 5: Global installed electricity transmission towers, Europe, 2014
Figure 6: Global installed electricity transmission towers, CIS, 2014
Figure 7: Global installed electricity transmission towers, Middle East, 2014
Figure 8: Global installed electricity transmission towers, North Africa, 2014
Figure 9: Global installed electricity transmission towers, Sub-Saharan Africa, 2014
Figure 10: Global installed electricity transmission towers, Asia Pacific, 2014
Figure 11: Global installed electricity transmission towers, South America, 2014
Figure 12: Global installed electricity transmission towers, Central America, 2014
Figure 13: World sales of electricity transmission towers, nominal $, 2014-2020
Figure 14: Sales of electricity transmission towers by regions, nominal $, 2015
Figure 15: The global networks of transmission lines, length in route km 1900 to 2050
Figure 16: The evolution of transmission line voltage, the first introductions
Figure 17: The long term demand cycles for towers, 1900 to 2050
Figure 18: Annual new and replacement installations of towers, 1900 to 2050
Figure 19: Suspension tower, single steel pole
Figure 20: Lattice steel suspension tower (L6 used in the United Kingdom)
Figure 21: Installation of transmission tower by helicopter
Figure 22: The scale of the helicopter operation illustrated
Figure 23: Peak and Cage of a Transmission Tower
Figure 24: Cross Arm and Body of a Transmission Tower
Figure 25: 220-kV single-circuit LST
Figure 26: 500-kV single-circuit LST
Figure 27: 220-kV double-circuit LST
Figure 28: 500-kV double-circuit LST
Figure 29: World installed base of utility poles, millions of poles by utility, 2015
Figure 30: World installed base of utility poles, millions of poles by region, 2015
Figure 31: World installed base of utility poles, millions of poles by region and utility, 2015
Figure 32: Historical growth of the pole pollution, all poles and electricity poles, 1900 to 2015, forecast to 2050
Figure 33: Historical growth of the pole population by region, 1900 to 2015, forecast to 2050
Figure 34: Historical growth of the pole pollution, all poles and wood poles, 1900 to 2015, forecast to 2050
Figure 35: Annual demand for utility poles (electricity, telecoms and rail) from 2014 to 2020.
Figure 36: Annual demand for utility poles (electricity, telecoms and rail) 2014 to 2020, new and replacements.
Figure 37: Annual demand for utility poles (electricity, telecoms and rail) 2014 to 2020, by region.
Figure 38: Demand for utility poles of all materials by region, 1900 to 2015, forecast to 2050
Figure 39: Global demand for poles by country in value nominal $, North America, 2014-2020
Figure 40: Utility pole in Japan
Figure 41: Lines in Bolivia (left) have considerably longer span than lines in Laos (right)
Figure 42: Double-circuit, 138-kV line on wood structures
Figure 43: Double-circuit, 138-kV line on galvanized steel poles
Figure 44: Single-circuit 138-kV line on weathering steel.
Figure 45: H-frame wood structure
Figure 46: Space allocations on a joint utility pole
Figure 47: Supply space on a utility pole
Figure 48: Safety Zone Space on a utility pole
Figure 49: The Communications Space in a utility pole
Figure 50: The principle of exponential corrosion
Figure 51: Phase 1 - Coffee Stain Rust
Figure 52: Phase 2 - Abrasive Rust
Figure 53: Phase 3 - Abrasive Rust
Figure 54: Phase 3 - The tower falls
Figure 55: Outline of potential decay patterns
Figure 56: Decay in a wood utility pole
Figure 57: Overhead line for rail traction
Figure 58: KEC International planned investment by region ($ billion)
Figure 59: Tower for single circuit, three phase system (three conductors)
Figure 60: Tower for double circuit, three phase system (six conductors)
Figure 61: Tower for multiple circuits, three phase system (twelve conductors)
Figure 62: Lattice (left) and Monopole (right) Towers
Figure 63: 2 Multiple Lines in a Power Corridor
Figure 64: Dietmar Koering of Arphenotype, competition for Icelandic Electrical Transco
Figure 65: Dietmar Koering of Arphenotype, competition for Icelandic Electrical Transco
Figure 66: Dietmar Koering of Arphenotype, competition for Icelandic Electrical Transco
Figure 67: Y Pylon by Knight Architects competition for National Grid 2012
Figure 68: Plexus by Arup for National Grid 2012
Figure 69: The Land of Giants, Iceland, Choi & Shine
Figure 70: A distribution line right of way
Figure 71: A wetland-scrub/shrub-dominated community the first year after a mow.
Figure 72: A grass-dominated community in an agricultural matrix the first year after a mow.
Figure 73: An example of a single ROW corridor.
Figure 74: An example of parallel transmission ROW corridors
Figure 75: Typical European right of way cross section, self-supporting tower
Figure 76: Typical European right of way cross section, guyed tower
Figure 77: Right-of-way comparison for equivalent capacity of 765-kV and 345-kV lines
Figure 78: Blue crane electrocuted in South Africa
Figure 79: White Storks in their nest on a utility pole in Vladeni, Romania
Figure 80: An example of a pole-mounted transformer
Figure 81: Distribution pole with symmetric chevron (arrow) on top as bird exclusion device
Figure 82: Dedicated nesting pole next to distribution pole with bird exclusion device

List of Tables:
Table 1: Global installed electricity transmission towers, 2015
Table 2: Global installed telecoms towers, by region, 2014-2020
Table 3: Global installed electricity transmission towers, North America, 2014
Table 4: Global installed electricity transmission towers, Europe, 2014
Table 5: Global installed electricity transmission towers, CIS, 2014
Table 6: Global installed electricity transmission towers, Middle East, 2014
Table 7: Global installed electricity transmission towers, North Africa, 2014
Table 8: Global installed electricity transmission towers, Sub-Saharan Africa, 2014
Table 9: Global installed electricity transmission towers, Asia Pacific, 2014
Table 10: Global installed electricity transmission towers, South America, 2014
Table 11: Global installed electricity transmission towers, Central America, 2014
Table 12: Sales of electricity transmission towers by regions, nominal $, 2015
Table 13: Sales of electricity transmission towers, North America, nominal $, 2014-2020
Table 14: Sales of electricity transmission towers, Europe, nominal $, 2014-2020
Table 15: Sales of electricity transmission towers, CIS, nominal $, 2014-2020
Table 16: Sales of electricity transmission towers, Middle East, nominal $, 2014-2020
Table 17: Sales of electricity transmission towers, North Africa, nominal $, 2014-2020
Table 18: Sales of electricity transmission towers, Sub-Saharan Africa, nominal $, 2014-2020
Table 19: Sales of electricity transmission towers, Asia, nominal $, 2014-2020
Table 20: Sales of electricity transmission towers, Pacific, nominal $, 2014-2020
Table 21: Sales of electricity transmission towers, South America, nominal $, 2014-2020
Table 22: Sales of electricity transmission towers, Central America, nominal $, 2014-2020
Table 23: Installed base of poles by country and utility, North America, 2015
Table 24: Installed base of poles by country and utility, Europe, 2015
Table 25: Installed base of poles by country and utility, CIS, 2015
Table 26: Installed base of poles by country and utility, Middle East, 2015
Table 27: Installed base of poles by country and utility, North Africa, 2015
Table 28: Installed base of poles by country and utility, Sub-Saharan Africa, 2015
Table 29: Installed base of poles by country and utility, Asia, 2015
Table 30: Installed base of poles by country and utility, Pacific, 2015
Table 31: Installed base of poles by country and utility, South America, 2015
Table 32: Installed base of poles by country and utility, Central America, 2015
Table 33: Demand for poles by country, North America, 2014-2020
Table 34: Demand for poles by country, Europe, 2014-2020
Table 35: Demand for poles by country, CIS, 2014-2020
Table 36: Demand for poles by country, Middle East, 2014-2020
Table 37: Demand for poles by country, North Africa, 2014-2020
Table 38: Demand for poles by country, Sub-Saharan Africa, 2014-2020
Table 39: Demand for poles by country, Asia, 2014-2020
Table 40: Demand for poles by country, Pacific, 2014-2020
Table 41: Demand for poles by country, South America, 2014-2020
Table 42: Demand for poles by country, Central America, 2014-2020
Table 43: Demand for poles by country in value nominal $, North America, 2014-2020
Table 44: Demand for poles by country in value nominal $, Europe, 2014-2020
Table 45: Demand for poles by country in value nominal $, CIS, 2014-2020
Table 46: Demand for poles by country in value nominal $, Middle East, 2014-2020
Table 47: Demand for poles by country in value nominal $, North Africa, 2014-2020
Table 48: Demand for poles by country in value nominal $, Sub-Saharan Africa, 2014-2020
Table 49: Demand for poles by country in value nominal $, Asia, 2014-2020
Table 50: Demand for poles by country in value nominal $, Pacific, 2014-2020
Table 51: Demand for poles by country in value nominal $, South America, 2014-2020
Table 52: Demand for poles by country in value nominal $, Central America, 2014-2020
Table 53: Description and cost of repairs
Table 54: Recommended Pole Inspection Schedules, Rural Utilities Service, US
Table 55: Electrified railways throughout the world, 2011
Table 56: Estimates of the annual number of collision victims with above ground transmission lines (excluding distribution lines) for three different countries.
Table 57: The size of large raptors

Ordering:
Order Online - http://www.researchandmarkets.com/reports/3332037/
Order by Fax - using the form below
Order by Post - print the order form below and send to
Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Web Address:</td>
<td>http://www.researchandmarkets.com/reports/3332037/</td>
</tr>
<tr>
<td>Office Code:</td>
<td>SC6IK9HX</td>
</tr>
</tbody>
</table>

Product Format
Please select the product format and quantity you require:

| Quantity | Electronic (PDF) - Single User: USD 3823 |

Contact Information
Please enter all the information below in BLOCK CAPITALS

<table>
<thead>
<tr>
<th>Title:</th>
<th>Mr ☐ Mrs ☐ Dr ☐ Miss ☐ Ms ☐ Prof ☐</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Name:</td>
<td></td>
</tr>
<tr>
<td>Last Name:</td>
<td></td>
</tr>
<tr>
<td>Email Address: *</td>
<td></td>
</tr>
<tr>
<td>Job Title:</td>
<td></td>
</tr>
<tr>
<td>Organisation:</td>
<td></td>
</tr>
<tr>
<td>Address:</td>
<td></td>
</tr>
<tr>
<td>City:</td>
<td></td>
</tr>
<tr>
<td>Postal / Zip Code:</td>
<td></td>
</tr>
<tr>
<td>Country:</td>
<td></td>
</tr>
<tr>
<td>Phone Number:</td>
<td></td>
</tr>
<tr>
<td>Fax Number:</td>
<td></td>
</tr>
</tbody>
</table>

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:

<table>
<thead>
<tr>
<th>Account number</th>
<th>833 130 83</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sort code</td>
<td>98-53-30</td>
</tr>
<tr>
<td>Swift code</td>
<td>ULSBIE2D</td>
</tr>
<tr>
<td>IBAN number</td>
<td>IE78ULSB98533083313083</td>
</tr>
<tr>
<td>Bank Address</td>
<td>Ulster Bank, 27-35 Main Street, Blackrock, Co. Dublin, Ireland</td>
</tr>
</tbody>
</table>

If you have a Marketing Code please enter it below:

Marketing Code: ______________________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World