Fuzzy Neural Networks for Real Time Control Applications

Description: AN INDISPENSABLE RESOURCE FOR ALL THOSE WHO DESIGN AND IMPLEMENT TYPE-1 AND TYPE-2 FUZZY NEURAL NETWORKS IN REAL TIME SYSTEMS Delve into the type-2 fuzzy logic systems and become engrossed in the parameter update algorithms for type-1 and type-2 fuzzy neural networks and their stability analysis with this book!

Not only does this book stand apart from others in its focus but also in its application-based presentation style. Prepared in a way that can be easily understood by those who are experienced and inexperienced in this field. Readers can benefit from the computer source codes for both identification and control purposes which are given at the end of the book.

A clear and an in-depth examination has been made of all the necessary mathematical foundations, type-1 and type-2 fuzzy neural network structures and their learning algorithms as well as their stability analysis.

You will find that each chapter is devoted to a different learning algorithm for the tuning of type-1 and type-2 fuzzy neural networks; some of which are:
- Gradient descent
- Levenberg-Marquardt
- Extended Kalman filter

In addition to the aforementioned conventional learning methods above, number of novel sliding mode control theory-based learning algorithms, which are simpler and have closed forms, and their stability analysis have been proposed. Furthermore, hybrid methods consisting of particle swarm optimization and sliding mode control theory-based algorithms have also been introduced.

The potential readers of this book are expected to be the undergraduate and graduate students, engineers, mathematicians and computer scientists. Not only can this book be used as a reference source for a scientist who is interested in fuzzy neural networks and their real-time implementations but also as a course book of fuzzy neural networks or artificial intelligence in master or doctorate university studies. We hope that this book will serve its main purpose successfully.

- Parameter update algorithms for type-1 and type-2 fuzzy neural networks and their stability analysis
- Contains algorithms that are applicable to real time systems
- Introduces fast and simple adaptation rules for type-1 and type-2 fuzzy neural networks
- Number of case studies both in identification and control
- Provides MATLAB® codes for some algorithms in the book

Contents:

Dedication
Preface
Acknowledgements
List of Acronyms/Abbreviations/Index terms
1- Mathematical Preliminaries
2- Fundamentals of Type-1 Fuzzy Logic Theory
3- Fundamentals of Type-2 Fuzzy Logic Theory
4- Type-2 Fuzzy Neural Networks
5- Gradient Descent Methods for Type-2 Fuzzy Neural Networks
6- Extended Kalman Filter Algorithm for the tuning of Type-2 Fuzzy Neural Networks
7- Sliding Mode Control Theory-Based Parameter Adaptation Rules for Fuzzy Neural Networks
8- Hybrid Training Method for Type-2 Fuzzy Neural Networks Using Particle Swarm Optimization
9- Noise Reduction Property of Type-2 Fuzzy Neural Networks
10- Case Studies: Identification Examples
11- Case Studies: Control Examples

Appendix

Ordering: Order Online - http://www.researchandmarkets.com/reports/3336071/

Order by Fax - using the form below

Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

Product Name: Fuzzy Neural Networks for Real Time Control Applications
Web Address: http://www.researchandmarkets.com/reports/3336071/
Office Code: SCPLVNQE

Product Format
Please select the product format and quantity you require:

Quantity

| Hard Copy | USD 80 + USD 28 Shipping/Handling |

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title: [] Mr [] Mrs [] Dr [] Miss [] Ms [] Prof
First Name: __ Last Name: _______________________________________
Email Address: * __
Job Title: __
Organisation: ___
Address: __
City: ___
Postal / Zip Code: __
Country: __
Phone Number: ___
Fax Number: ___

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information
Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code:

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World