Drones: Even Trains and Planes Use Remote Control Like Drones, Market Shares, Market Strategies, and Market Forecasts, 2015 to 2021

Description:

Drones: Trains, Planes, and Drones Use Remote Control: Market Shares, Strategy, and Forecasts, Worldwide, 2015 to 2021. Next generation drones leverage better technology, launching from ships anywhere. The technology is evolving better navigation, softer landings, longer flights, better ability to carry different payloads.

The drones are able to achieve military and commercial tasks. They have been evolving airfreight delivery systems capability. They are used for surveillance, reconnaissance and intelligence missions. They do 3D mapping, commercial pipeline observation, border patrol, package delivery, photography, and agriculture. These are more energy efficient, last longer and have a significantly lower cost of operation than manned aircraft.

Drone technology extends everywhere, even to airline control towers. Drones evolving technology is extending uses, even evolving to trains and planes. The use of Drone technology to control moving devices remotely extends the notion of drones, creating a larger potential drone market. Military drones will make every navy ship an aircraft carrier. They can be launched from anywhere, not needing an airfield.

In the recent Germanwings airline crash, the control tower knew for 10 minutes that the airliner was set to destruct with all the passengers on board but the controllers in the tower were powerless to help. This crash represents an instance of how security systems and sensors might be used from a control tower to effect remote control in response to a security issue.

Headlines like “Amtrak train derailed going 106 M.P.H. on sharp curve; at least 9 killed”, represent another instance of where remote control of a transport unit would improve safety in train operations. Remote monitoring, and remote piloting offer guidelines on the commercial use of unmanned aircraft systems. Drone commercial uses will provide billions of dollars in economic growth.

Drone unmanned aerial vehicle (UAV) technology has reached a level of maturity that has put these systems at the forefront of aerospace manufacturing. Procurement around the world is adapting to drone availability. Use in the global war on terrorism has demonstrated unique usefulness for military intelligence, surveillance, reconnaissance and communications relay.

Relatively low-cost of drones make them work for civilian applications. Law enforcement, mapping, video making, movie making, environmental monitoring, and aerial survey become compelling applications in the future.

Drone aircraft are sophisticated and flexible. They take off, fly and land autonomously. They enable engineers to push the envelope of normal flight. Reconnaissance drones can fly for days continuously. Remote, ground-based pilots can work in shifts.

Removal of the need for an onboard pilot ushers in an era of low cost aerial craft called drones. The drone elimination of the need for human support systems on aircraft dramatically reduces the aircraft’s size, complexity, and power requirements. The drones effectively reduce overall program cost, development time and risk. Many advanced flight technologies are for piloted craft. These are initially tested using unmanned subscale demonstrators.

Removing the pilot allows designers to simplify the aircraft’s design and then test it at reduced risk. It allows configurations that would be impossible or impractical for human occupation.

A common issue with UAV platforms is the need to optimize these aircraft. UAV are used to carry useful payloads. These platforms are flexible as to payload, permitting interchangeable or additional sensors and other electronics, extra fuel or weapons systems. The sole function of an unmanned aircraft is to get to a target location, perform a task, and then return in the most efficient and cost-effective way. Without a pilot aboard, the return trip is optional. Light weight is central to UAV design.
Drones represent a way to use air to travel faster and at less cost. The market is divided between military and commercial drones. Military drones represent the future of the national security presence for every nation. Increasing technology sophistication and lower costs are achieving dramatic market shifts.

Remote operation occurs in a control tower. The control tower knew for ten minutes that the Germanwings flight was headed for disaster and could do nothing about it, the same was true during the airliner participation in the 911 terrorist bombings. What this study is about is control towers that have the ability to stop trains, planes, and control drones.

Control towers are set to become a way of life and drones light the way. Other technologies will follow. If a train is approaching a curve at 100 miles per hour when it should be going 50 miles per hour, there in the future there will be a way to remotely take over the train and slow it or stop it.

If a plane is hijacked, if there is a bad guy in the pilot's seat, then in the future, the control tower will take over the plane. Drones lead the way in this regard. Drones provide a way to permit a plane to enter an airspace and to be controlled remotely. It is the drone technology that will be adopted by the trains and planes in the future of control tower expansion.

In this study, we illustrate how drones achieve doing work even though they are remotely controlled. Remote operation of trains is now possible. A speeding train can be stopped by trained staff watching remotely. The rules for this have yet to be fully implemented.

Transportation Trades AFL-CIO Endorses Federal Mandates To Require At Least Two Crew Members On U.S. Freight Trains

Drone market forecasts indicate strong growth anticipated Markets at $3.6 billion in 2014 are anticipated to reach $16.1 billion by 2021. A $3.6 billion market is substantial indicating the presence of many reference accounts for vendors. The wide variety of models and applications speak to the strong foothold in the market. With many vendors pushing products, the aggregate marketing will contribute to building a huge market for drones.

Commercial drone agricultural markets will grow significantly as the aircraft are able to perform more cost efficiently than other ways of farming, ranching, and orchard tending. Package delivery is evolving as a nascent market for commercial drones.

Military markets for drones with strike capability will grow rapidly. Every segment of drone market applications is poised for strong growth as the designs become more mature and vendors spread throughout the world.

Military drones will be used on ships to replace missiles. Drones will master becoming more elusive and able to fly faster to get out of the way of armies firing at them. Drones will be launched from the decks of ships and controlled remotely to deal with trouble anywhere.

Drones markets promise to grow significantly because of the more economical visualization and navigation provided by systems. Visualization includes mapping from the air, inspection from the air, surveillance from the air, and package delivery from the air. The unmanned aircraft equipped with cameras are able to do things that cannot be done in any other way. This bodes well for market development.

Unmanned aircraft systems promise to achieve a more significant aspect of commercial market presence. Army Unmanned Aircraft Systems flying of 3 million flight hours gives drones market credibility. Eighty eight percent of those hours were logged in combat situations in Iraq and Afghanistan, paving the way for commercial drone markets to develop.

According to Susan Eustis, leader of the team that prepared the study, “Quantities of fielded military and commercial systems of every size and description are set to increase. Every ship can become an aircraft carrier with drones, every commercial endeavor can be made to operate more efficiently with drones. Police departments, the oil and gas industry, border patrol, and utilities are all using commercial drones. Units are used for agriculture. Vendors continue to improve the capabilities of drone aircraft. Governments continue to improve the rules and regulations controlling drones. Their ability to support the military and commercial endeavors is increasing. Unmanned aircraft have fundamentally changed the accuracy of utility and oil and gas inspections. The drones are set to fundamentally change how agriculture is conducted.” the most efficient and cost-effective way. Without a pilot aboard, the return trip is optional. Light weight is central to UAV design.
2.5.7 Prox Dynamics AS
2.5.8 Denel Dynamics
2.5.9 SAIC
2.5.10 Israel Aerospace Industries
2.5.11 General Dynamics Corporation
2.5.12 Wing Loong Medium-Altitude Long-Endurance (MALE) Drone
2.5.13 DJI
2.5.14 Drone Upgrade Spending
2.5.15 Military Drone Segments, Specific Drones and Their Vendors
2.5.2 Military Drone Systems Market Segments: Persistent
2.5.3 Military Penetrating Drone Systems Market Segments:
2.5.4 Military Tactical Drone Systems Market Segments:
2.5.5 Military Small Tactical Drone Systems Market Segments:
2.5.6 Military Mini Drone Systems Market Segments:
2.5.7 Military Drone Market Share Unit Analysis
2.5.8 US Military Drone Systems Installed and Sold by Vendor and by Type of Drone Market Shares, Units and Dollars
2.6 Military Drone Market Forecasts
2.6.1 Military Drone Market Segment Forecasts
2.7 Military Drone Regional Market
2.7.1 US: Growing Demand For Use Of Drones
2.7.2 US Defense Industry Initiatives DII-Related Initiatives
2.7.3 US Navy
2.7.4 US Air Force Drone Budget
2.7.5 US Military to Spend $38.9 Billion On Drones And Unmanned Systems Over 7 Years
2.7.6 Inventory of Unmanned Aerial Integrated Systems
2.7.7 US Drone Roadmap Anticipates Substantial Growth
2.7.8 US Military Drone Robot Technology Budget Requests
2.7.9 Unmanned Ground Systems
2.7.10 Unmanned Maritime Systems
2.7.11 US Military Technology Investment
2.8 Commercial Drone Unmanned Aerial Systems (UAS) Market Shares
2.8.1 Commercial Drone Unmanned Aerial Systems (UAS) Market Shares
2.8.2 Lockheed Martin
2.8.3 BP and AeroVironment Launch FAA-Approved, Commercial Unmanned Aircraft Operations
2.8.4 AeroVironment's Extensive Operational Track Record
2.8.5 AeroVironment $11.2 Million Order for Raven Unmanned Aircraft Systems and Services
2.8.6 Textron /AAI
2.8.7 Textron Shadow®
2.8.8 Aurora Flight Sciences Odysseus Solar-Powered Aircraft
2.8.9 Insitu
2.8.10 Dragunflyer X4 UAV
2.8.11 Boeing Insitu
2.8.12 DRS Unmanned Technologies Ground Control Stations
2.8.13 Proxy Aviation Systems
2.8.14 Northrop Grumman Bat 3
2.8.15 General Atomics Predator® UAS
2.8.16 General Atomics Predator® B UAS
2.8.17 Border Patrol / Law Enforcement Drone Unmanned Aerial Systems (UAS) Market Shares
2.8.18 Package Delivery Drone Unmanned Aerial Systems (UAS) Market Shares,
2.8.19 Google Package Delivery
2.8.20 Utility and Pipeline Inspection Drone Unmanned Aerial Systems (UAS) Market Shares
2.8.21 Agricultural Inspection and Planting Drone Unmanned Aerial Systems (UAS) Market Shares
2.8.22 Yamaha RMAX
2.8.23 Prox Dynamics PD-100 Black Hornet
2.8.24 Photography and Videography Drone Unmanned Aerial Systems (UAS) Market Shares
2.9 Commercial Drone Unmanned Aircraft Market Forecasts
2.9.1 Unmanned Aerial Systems (UAS), Market Total Forecasts
2.9.2 Small Commercial Drone Unmanned Aircraft Market Forecasts
2.9.3 Commercial Drone UAS Wing Based Sub-segments
2.10 Unmanned Aerial Systems Payloads
2.10.1 Composites Key to UAV Utility
2.11 Unmanned Airplane Regional Market Analysis
2.11.1 Unmanned Aerial Vehicle (UAV) Industry Regional Summary
2.11.2 U.S Accounts for 73 Percent Of The Worldwide Research, Development, Test, And Evaluation (RDT&E) Spending On UAV Technology
2.11.3 UAS Marketplace Moving Target
2.11.4 China
2.11.5 China
2.11.6 DoD Source Materials
2.11.7 US Drone Research, Development, Test & Evaluation (RDT&E)
2.11.8 US Drones for Aircraft Carriers
2.11.9 Worldwide Trade In Drones
2.11.10 Chinese Smog-Fighting Drones That Spray Chemicals To Capture Air Pollution
2.11.11 China Desires Exports, Steps Up Research In Military Drones
2.11.12 Drones for the Netherlands
2.11.13 U.S. State Department Drone Export Guidelines
2.11.14 Canada
2.11.15 Singapore
2.11.16 Brazil
2.11.17 Morocco
2.11.18 India
2.11.19 Russia Develops Heavy Drone
2.11.20 Russian Drones In the Skies In Ukraine

3. Trains, Planes, and Drones: Remote Flight Control of Rail and Aerial Systems Product Description 304
3.1 Cattron Group
3.1.1 Cattron Group Remote Control Rail Applications
3.2 Boeing
3.2.1 Boeing Airliner Flight Control An Issue
3.2.2 Boeing Airliner Remote Control Autopilot Patent
3.2.3 Boeing / Insitu Integrator System
3.2.4 Boeing A160 Hummingbird Helicopter
3.2.5 Boeing Condor Unmanned Aerial Vehicle
3.2.6 Boeing ScanEagle Small Footprint UAS Solutions
3.2.7 Boeing / Insitu / Commercial
3.2.8 Insitu Arctic Ice Floe Monitoring
3.2.9 Insitu Mammal Monitoring
3.2.10 Insitu Pipeline Surveys
3.2.11 Insitu Power-Line Inspections
3.2.12 Insitu Geomagnetic Surveys
3.2.13 Insitu Commercial Fishing
3.2.14 Insitu Public Safety
3.2.15 Insitu Disaster Response
3.2.16 Insitu Search and Rescue
3.2.17 Insitu Port and Border Security
3.2.18 Insitu Communications Relay
3.2.19 Insitu Over-the-Horizon Sensing
3.2.20 Insitu Counter-Narcotics
3.2.21 Insitu Offshore Base
3.2.22 Insitu Defense
3.2.23 Insitu Payload Systems
3.2.24 Insitu Force Protection
3.2.25 Insitu Combined Arms
3.2.26 Insitu Research Future of UAS Operations and Technology
3.2.27 Insitu ICOMC2 Streamline Process
3.2.28 Insitu ICOMC2's Breakthrough Technology Extends Drone Capabilities
3.2.29 Insitu Integrator
3.2.30 Insitu NightEagle
3.2.31 Boeing X-37B Space Shuttle
3.3 GoPro
3.4 AeroVironment
3.4.1 AeroVironment Global Observer
3.4.2 AeroVironement RQ-20A Puma AE
3.4.3 AeroVironement Wasp AE
3.4.4 AeroVironement Shrike VTOL
3.4.5 AeroVironement Ground Control System
3.4.6 BP and AeroVironement Launch FAA-Approved, Commercial Unmanned Aircraft Operations
3.4.7 AeroVironement Integrated LiDAR Sensor Payload
3.4.8 AeroVironement and Commercial UAV
3.4.9 AeroVironement AV’s Family of Small UAS
3.4.10 AeroVironement Raven
3.5 Amazon
3.6 Textron 382
3.6.1 Textron Shadow M
3.6.2 Textron One System Remote Video Terminal
3.6.3 Textron Universal Ground Control Station
3.6.4 Textron Aerosonde
3.6.5 Textron / Aerosonde AAI Services
3.6.6 Textron Systems AAI
3.6.7 Textron Systems AAI RQ-7B Shadow® Tactical UAS Unmanned Aircraft Systems (UAS)
3.6.8 Textron Systems AAI Shadow® Tactical Unmanned Aircraft System (TUAS)
3.6.9 AAI Shadow 400 Unmanned Aircraft Deployed With Allied Naval Forces
3.6.10 Textron Systems AAI Shadow 600 System
3.6.11 Textron
3.6.12 Textron Shadow® Reconnaissance, Surveillance
3.6.13 Textron UAS Support
3.6.14 Textron UAS Training
3.6.15 Textron Systems AAI Ground Control Stations
3.6.16 Textron Systems AAI Remote Intelligence, Surveillance and Reconnaissance Terminals
3.6.17 Textron Systems AAI / Aerosonde®
3.6.18 Textron Systems AAI and Aeronautics Orbiter™
3.6.19 Textron Systems AAI Ground Control Stations
3.6.20 Textron Systems AAI Remote Intelligence, Surveillance and Reconnaissance Terminals
3.6.21 Textron Systems AAI One System Remote Video Terminal
3.6.22 Textron Systems AAI Tactical Sensor Intelligence Sharing System
3.6.23 Textron Systems Wasp Micro Air Vehicle (MAV)
3.6.24 Textron Systems Homeland Security
3.6.25 Nano Air Vehicle
3.7 BAE Systems
3.7.1 BAE Systems Demon UAV
3.7.2 BAE Systems Drones
3.7.3 BAE Systems Herti
3.7.4 BAE Systems Image Collection and Exploitation (ICE) Sensor Management System
3.7.5 BAE Systems Mantis
3.7.6 BAE Systems MIM500™ Series of Uncooled Infrared Camera Cores
3.7.7 BAE Systems Taranis
3.7.8 BAE Systems Taranis - Unmanned Combat Air Vehicle (UCAV)
3.7.9 BAE Systems Telemos
3.8 Aurora Flight Sciences Hale 433
3.8.1 Aurora Centaur
3.8.2 Aurora Orion
3.8.3 Aurora SKATE - Small Unmanned Aircraft System
3.8.4 Aurora’s HALE
3.8.5 Aurora’s Advanced Concepts: SunLight Eagle - Green Flight
3.8.6 Aurora’s Excalibur
3.8.7 Aurora GoldenEye 80 - Small, Capable Surveillance UAS
3.8.8 Aurora GoldenEye 50
3.8.9 Aurora GoldenEye 80
3.8.10 Aurora’s Advanced Concepts: UHATF
3.8.11 Aurora Flight Sciences Odysseus Solar-Powered Aircraft
3.8.12 Aurora Flight Sciences Orion HALL
3.8.13 Aurora Flight Sciences Earth Science Applications
3.8.14 Aurora Small Unmanned Aerial Systems
3.8.15 Aurora Tactical Systems
3.8.16 Aurora Diamond DA42 MPP
3.8.17 Aurora System Description
3.9 L-3 Communications Next Generation Precision Unmanned Aircraft Systems
 3.9.1 L-3 Communications Cutlass Tube-Launched Small UAS
 3.9.2 L-3 Cutlass Communications Small Expendable Tube-Launched UAS
 3.9.3 L-3's Mid-Tier UAS Programs
 3.9.4 L-3 Communications UAS APEX Programs
 3.9.5 L-3 Communications Medium Altitude Long Endurance Unmanned Or Manned – Mobius
 3.9.6 L-3 Unmanned Systems' Viking 100 Runway Operations
 3.9.7 L-3 Communications Viking 300 Runway Operations
 3.9.8 L-3 Communications Viking 400
 3.9.9 L-3 Communications TigerShark
 3.9.10 L-3 Communications Generation IV Ground Control Station
 3.9.11 L-3 Communications On-board Precision Automated Landing System (O-PALS)
 3.9.12 L-3 Communications ISR Services
 3.9.13 L-3 Communications System Integration and Technical Support
3.10 Challis Heliplane UAV Inc.
 3.10.1 Challis Heliplane UAV E950
3.8 Draganfly Innovations Inc.
 3.8.1 Draganfly Draganflyer X4-P
 3.8.2 Draganfly Handheld Ground Control System
 3.8.3 Draganfly Vision Based System (VBS)
 3.8.4 Draganfly Guardian
 3.8.5 Draganfly X4
 3.8.6 Draganfly X6
 3.8.7 Draganfly Aerial Photography & Video Applications
 3.8.8 Draganfly Real Estate Applications
 3.8.9 Draganfly Law Enforcement Applications
 3.8.10 Draganfly X8
3.9 DRS Unmanned Technologies Ground Control Stations
 3.9.1 DRS Aircraft Monitoring Unit (AMU)
3.10 General Atomics
 3.10.1 General Atomics Predator® B UAS
 3.10.2 General Atomics Certifiable Predator B RPA (Developmental)
 3.10.3 General Atomics Certifiable Predator B RPA Performance
 3.10.4 General Atomics Predator Jet Performance C Avenger® UAS
 3.10.5 General Atomics Aeronautical Systems MQ-1B Predator
 3.10.6 General Atomics Predator XP RPA
 3.10.7 General Atomics Gray Eagle UAS
 3.10.8 General Atomics Improved Gray Eagle (IGE) UAS
 3.10.1 General Atomics Gray Eagle™ UAS
 3.10.2 General Atomics Aeronautical Systems GA - Gray Eagle™ UAS
 3.10.3 General Atomics Aeronautical Systems, Inc. (GA-ASI) Claw® Sensor Control
 3.10.4 GA-ASI Athena RF Tag
3.11 Integrated Dynamics 571
 3.11.1 Integrated Dynamics Rover
 3.11.2 Integrated Dynamics Explorer
 3.11.3 Integrated Dynamics Skycam
 3.11.4 Integrated Dynamics Pride
 3.11.5 Integrated Dynamics Spirit
 3.11.6 Integrated Dynamics Border Eagle MK - II
 3.11.7 Integrated Dynamics Hornet
 3.11.8 Integrated Dynamics HAWK MK - V
 3.11.9 Integrated Dynamics VISION UAV systems
 3.11.10 Integrated Dynamics VISION MK I
 3.11.11 Integrated Dynamics Vision M K - I I
 3.11.12 Integrated Dynamics S/Integrated Dynamics Integrated Dynamics M K - I
 3.11.13 Integrated Dynamics Vector
 3.11.14 Integrated Dynamics Tornado
 3.11.15 Integrated Dynamics Nishan MK - II
 3.11.16 Integrated Dynamics Nishan TJ - 1000
3.12 MMIST Mist Mobility
 3.12.1 Sherpa Ranger / MMist
3.13 Marcus UAV Systems
3.13.1 Marcus Autopilots
3.14 Proxy Aviation Systems
3.14.1 Proxy PROTEUS™
3.14.2 Proxy PACS
3.14.3 The Proxy Autonomous Control Suite (PACS™) Virtual Pilot / Virtual Operator
3.14.4 Proxy Cooperative Control/UDMS
3.14.5 Proxy SkyRaider
3.15 LaserMotive 620
3.15.1 LaserMotive UAV Power Links
3.15.2 LaserMotive Teams with Germany's Ascending Technologies
3.16 China Aerospace Science & Industry Corp Jet-Powered WJ600
3.16.1 Chinese Naval UAS
3.17 ASN Technology Group 626
3.18 Northrop Grumman / Scaled Composites
3.18.1 Proteus
3.18.2 Northrop Grumman MLB Company
3.18.3 Northrop Grumman Bat 3
3.18.4 Northrop Grumman BAT 4 UAV
3.18.5 Northrop Grumman V-BAT UAV
3.18.6 Northrop Grumman Super Bat with Piccolo II Autopilot and TASE Gimbal
3.18.7 Northrop Grumman Unmanned Aerial Systems
3.18.8 Northrop Grumman Bat Unmanned Aircraft System (UAS)
3.18.9 Northrop Grumman Firebird
3.18.10 Northrop Grumman Persistent Multiple Intelligence Gathering Air System
3.18.11 Northrop Grumman M324 UAS (Unmanned Aerial System)
3.18.12 Northrop Grumman RQ-4 Block 20 Global Hawk
3.18.13 Northrop Grumman Drone Program Overview
3.18.14 Northrop Grumman Block 20 Global Hawk Specification
3.18.15 Northrop Grumman Euro Hawk®
3.18.16 Northrop Grumman Triton
3.18.17 Northrop Grumman's MQ-4C Triton Program:
3.18.18 Northrop Grumman Common Mission Management System (CMMS)
3.18.19 Northrop Grumman Solution
3.18.20 Northrop Grumman RQ-4 Global Hawk
3.18.21 Northrop Grumman Global Hawk (U.S. Air Force) RQ-4 Programs
3.18.22 Northrop Grumman GHMD (U.S. Navy
3.18.23 NASA Global Hawk (NASA Dryden)
3.18.24 NATO AGS (U.S. and Allied Nations)
3.18.25 Northrop Grumman X-47B UCAS
3.18.26 Northrop Grumman Fire-X Medium-Range Vertical Unmanned Aircraft System
3.19 Schiebel Camcopter S-100
3.19.1 Schiebel Camcopter Target Markets:
3.20 Parrot AR.Drone 2.0 $299, Flies Off a Roof 668
3.21 Google
3.21.1 Google Loon
3.21.2 Google Loon Balloon Project
3.21.3 Google Titan Aerospace
3.22 Facebook
3.23 Outernet Beamed Via Satellite
3.23.1 Outernet Mobile Cloud Network Infrastructure
3.24 Lockheed Martin Ground Control System 680
3.24.1 Lockheed Martin Integrated Sensor Is Structure (ISIS)
3.24.2 Lockheed Martin Integrated Sensor IS Structure (ISIS) Concept of Operations
3.24.3 Lockheed Martin K-MAX Unmanned Helicopter
3.24.4 Lockheed Martin K-MAX Used By Commercial Operators
3.24.5 Lockheed Martin ARES
3.24.6 Lockheed Martin Desert Hawk III
3.24.7 Lockheed Martin Fury
3.24.8 Lockheed Martin Expeditionary Ground Control System
3.24.9 Lockheed Martin Remote Minehunting System
3.24.10 Lockheed Martin Marlin
3.24.11 Lockheed Martin Persistent Threat Detection System
3.24.12 Lockheed Martin Stalker UAS Package Delivery
3.24.13 Lockheed Martin Stalker Droppable Payload
3.25 TRNDlabs SKEYE Nano Drone
3.26 DJI Industries Phantom 3 Drone
3.26.1 DJI Industries Phantom 3 Drone Live HD View
3.26.2 DJI Industries Phantom 3 Drone Complete Control
3.26.3 DJI Industries Phantom Intelligent Battery
3.26.4 DJI Industries Inspire Drone
3.26.5 DJI Industries Ronin-M
3.26.6 DJI Industries Spreading Wings S1000+
3.26.7 DJI Industries Zenmuse Z15-A7
3.27 Prox Dynamics PD-100 Black Hornet PRS
3.28 Denel Dynamics Seeker 400 UAS
3.28.1 Denel Dynamics Seeker 400 UAS Multi-mission, Multi-role ISR System
3.28.2 Denel Dynamics Seeker 400 UAS System
3.28.3 Denel Dynamics Seeker 400 UAS Multi-mission, Multi-role ISR System Features
3.28.4 Denel Dynamics Hungwe UAS
3.28.5 Denel Dynamics Skua
3.28.6 Denel Dynamics Skua High-speed Target Drone
3.29 IAI/Malat Israel Aerospace Industries Heron
3.29.1 IAI/Malat Israel Aerospace Industries Super Heron
3.29.2 Israel Aerospace Industries Hunter
3.29.3 Israel Aerospace Industries / RUAG Aerospace Ranger
3.29.4 Israel Aerospace Industries Scout
3.29.5 Israel Aerospace Industries Pioneer
3.29.6 Israel Aerospace Industries Searcher MKIII
3.29.7 Israel Aerospace Industries Panther Fixed Wing VTOL UAS
3.29.8 Israel Aerospace Industries Mini Panther Fixed Wing VTOL Mini UAS 754
3.30 Safran
3.30.1 Safran Patroller and Sperwer
3.31 Honeywell
3.31.1 Honeywell Engines in General Atomics MQ-9 Reaper
3.32 Prox Dynamics AS 764
3.33 DJI
3.33.1 DJI Phantom
3.33.2 DJI Inspire 1
3.33.3 DJI Ronin
3.33.4 DJI Ronin Major Updates:

4. Drone Unmanned Aerial Systems (UAS) Technology
4.1 Learning to Fly a Hobby or Commercial Drone
4.1.1 US FAA Launches Drone Safety Campaign
4.2 UAS Sense and Avoid Evolution Avionics Approach 772
4.3 Military Drone Technology
4.3.1 Military Systems Interoperability
4.3.2 Drone Operational Benefits Of Autonomy
4.4 Northrop Grumman.BAT UAV Open Architecture
4.5 Integrated Dynamics Flight Telecommand & Control Systems
4.5.1 AP 2000
4.5.2 AP 5000
4.5.3 IFCS-6000 (Integrated Autonomous Flight Control System)
4.5.4 IFCS-7000 (Integrated Autonomous Flight Control System)
4.5.5 Portable Telecommand And Control System (P.T.C.S.)
4.6 Improved GPS Operations
4.7 Integrated Radio Guidance Transmitter (IRGX)
4.7.1 Portable Telecommand And Control System (P.T.C.S.)
4.8 IRGX (Integrated Radio Guidance Transmitter) 794
4.8.1 Ground Control Stations
4.8.2 GCS 1200
4.8.3 GCS 2000
4.9 Antenna Tracking Systems
4.10 ATPS 1200
4.10.1 ATPS 2000
4.10.2 Gyro Stabilized Payloads
4.10.3 GSP 100
4.10.4 GSP 900
4.10.5 GSP 1200
4.11 Civilian UAV's - Rover Systemstm
4.12 CPI-406 Deployable Emergency Locator Transmitter (ELT)
4.12.1 Deployable Flight Incident Recorder Set (DFIRS)
4.12.2 Airborne Separation Video System (ASVS)
4.12.3 Airborne Separation Video System - Remote Sensor (ASVS – RS)
4.12.4 Airborne Tactical Server (ATS) 805
4.13 Cloud Computing and Multilayer Security
4.14 Aurora Very High-Altitude Propulsion System (VHAPS)
4.15 Aurora Autonomy & Flight Control
4.15.1 Aurora Guidance Sensors And Control Systems MAV Guidance
4.15.2 Aurora Multi-Vehicle Cooperative Control for Air and Sea Vehicles in Littoral Operations (UAV/USV)
4.15.3 Aurora and MIT On-board Planning System for UAVs Supporting Expeditionary Reconnaissance and Surveillance (OPS-USER)
4.15.4 Aurora Flare Planning
4.15.5 Aurora Distributed Sensor Fusion
4.15.6 Aurora Aerospace Electronics
4.15.7 Aurora is CTC-REF
4.16 Space Technologies: Autonomous Control of Space Nuclear Reactors (ACSNR) 819
4.16.1 Rule-based Asset Management for Space Exploration Systems (RAMSES)
4.16.2 Synchronized Position Hold, Engage & Reorient Experiment Satellites (SPHERES)
4.17 Positive Pressure Relief Valve (PPRV)
4.17.1 Chip-Scale Atomic Clock (CSAC)
4.17.2 Low–Design-Impact Inspection Vehicle (LIIVe)
4.17.3 Synthetic Imaging Maneuver Optimization (SIMO)
4.17.4 Self-Assembling Wireless Autonomous Reconfigurable Modules (SWARM)
4.17.8 Persistent, Long-Range Reconnaissance Capabilities United States Navy's Broad Area Maritime Surveillance (BAMS) Unmanned Aircraft System (UAS) program
4.18.2 Navy Unmanned Combat Air System UCAS Program:
4.18.3 Navy Unmanned Combat Air System UCAS: Objectives:
4.19 Search and Rescue (SAR)
4.20 L-3 Communications LinkTEK™ IDS
4.21 L-3 Communications FlightTEK® SMC
4.21.1 Helicopter Main Limiting Factor Retreating Blade Stall
4.22 Draganflyer X4 Applications
4.22.1 Draganflyer X4 Large Project Management
4.22.2 Draganflyer Remote Supervision and Investigation of Equipment
4.22.3 Draganflyer Remote Supervision and Investigation of Agricultural Land and Equipment
4.22.7 The Draganflyer X4 is Fun to Fly
4.23 Drones Protect US Commerce and US Civilian Safety
4.23.1 John Adams Articulates the Need for Military to Fight Terrorists
4.23.2 John Adam's Solution for Terrorism
5. Drone and Remote Control Company Description
5.1 AeroVironment
5.1.1 AeroVironment Financial Results For Its Third Quarter Ended January 31, 2015
5.2 ASN Technologies
5.3 Aurora Flight
5.3.1 Aurora 2013 Employee Exceptional Service Award
5.4 Aviation Industry Corp (Avic)
5.4.1 Aviation Industry Corp / Thielert
5.5 BAE Systems 867
5.6 Boeing
5.6.1 Boeing 2015 Revenue
5.6.2 Boeing Commercial Airplanes
5.6.3 Boeing Defense, Space & Security
5.6.4 Boeing Capital Corporation
5.6.5 Boeing Engineering, Operations & Technology
5.6.6 Boeing Shared Services Group
5.6.7 Boeing Revenue by Segment
5.6.8 Boeing / Insitu
5.6.9 Boeing Defense, Space & Security
5.7 Challis UAV Inc. 881
5.8 China Aerospace
5.8.1 China Aerospace CASC Space Technology
5.8.2 China Aerospace CASC Revenue
5.9 Denel Dynamics
5.10 DJI 884
5.11 Draganflyer
5.11.1 DraganBot
5.11.2 Draganflyer ABEX Awards
5.12 Finmeccanica
5.12.1 DRS Technologies
5.13 Flirtey
5.14 General Atomics
5.14.1 USAF awards Contracts to GA-ASI to convert 38 Reaper UASs to Extended Range Capability configuration
5.14.2 U.S. Air Force Plans for Extended-Range Reaper
5.15 General Dynamics
5.15.1 Sequester Mechanism
5.15.2 General Dynamics Revenue 900
5.15.3 General Dynamics Robotic Systems
5.15.4 General Dynamics Robotic Systems (GDRS) Vision
5.15.5 General Dynamics Robotic Systems (GDRS) Manufacturing
5.15.6 General Dynamics Autonomous Land And Air Vehicle Development
5.16 Google
5.16.1 Google Revenue
5.16.2 Google Revenues by Segment and Geography
5.16.3 Google / Boston Dynamics
5.16.4 Boston Dynamics LS3 - Legged Squad Support Systems
5.16.5 Boston Dynamics CHEETAH - Fastest Legged Robot
5.16.6 Boston Dynamics Atlas - The Agile Anthropomorphic Robot
5.16.7 Boston Dynamics BigDog
5.16.8 Boston Dynamics LittleDog - The Legged Locomotion Learning Robot
5.16.9 Google Robotic Division
5.16.10 Google Self-Driving Car
5.16.11 Google Cars Address Vast Majority Of Vehicle Accidents Due To Human Error
5.16.12 Google Business
5.16.13 Google Corporate Highlights
5.16.14 Google Search
5.17 GoPro
5.17.1 GoPro Opular Mount
5.17.2 GoPro Revenue Surges 54% As It Gains Popularity Abroad
5.17.3 GoPro Acquires Kolor, A Virtual Reality Company
5.18 Honeywell
5.18.1 Honeywell T-Hawk Military Mini Drone
5.18.2 Honeywell’s Unmanned Aerial Vehicle RMUs
5.18.3 Honeywell Navigation
5.19 Integrated Dynamics 931
5.20 Israel Aerospace Industries
5.20.1 Israel Aerospace Industries MALAT Division
5.21 L-3 Communications
5.21.1 L3 Communications
5.21.2 L-3 Aerospace Systems
5.21.3 L-3 Electronic Systems
5.21.4 L-3 Communication Systems
5.21.5 L-3 National Security Solutions
5.21.6 L-3 Revenue by Segment
5.22 Laird / Cattron Group International
5.22.1 Cattron- Theimeg Branding
5.23 Laser Motive 947
5.24 Lockheed Martin
5.24.1 Lockheed Martin First Quarter 2015 Results
5.24.2 Lockheed Martin Symphony Improvised Explosive Device Jammer Systems
5.24.3 Lockheed Martin Aeronautics Revenue
5.24.4 Lockheed Martin Electronic Systems
5.24.5 Lockheed Martin
5.25 Marcus UAV
5.26 MMist
5.26.1 MMIST Sherpatm Guided Parachute System
5.26.2 MMIST SnowGoosetm CQ-10A Unmanned Aerial System (UAS)
5.27 Northrop Grumman 964
5.27.1 Northrop Grumman Revenue
5.27.2 Northrop Grumman Remotec
5.27.3 Northrop Grumman Leading Global Security Company
5.27.4 Northrop Grumman Supplies Marine Navigation Equipment
5.27.5 Northrop Grumman Recognized by UK Ministry of Defense for Role in Supporting Sentry AWACS Aircraft During Military Operations in Libya
5.27.6 Northrop Grumman Corporation Subsidiary Remotec Inc. upgrade the U.S. Air Force fleet of Andros HD-1
5.27.7 Northrop Grumman NAV CANADA Supplier
5.28 Parrot/senseFly
5.29.1 Parrot Group / senseFly
5.29.2 Parrot Group senseFly CTI Certified
5.30 Prox Dynamics
5.31 Proxy Technologies
5.32 RUAG Aerospace
5.33 Safran Morpho
5.33.1 Safron Morpho Identification Division
5.33.2 Safron Morpho e-Documents Division
5.33.3 Safron Morpho e-Documents Payments
5.33.4 Safron Morpho e-Documents Identity & Access Management
5.33.5 Safran Morpho Global Presence
5.33.6 Safron Morpho Detection Division
5.33.7 Safran Morpho Revenue 2015
5.33.8 Key figures for the first quarter of 2015
5.33.9 Safran Morpho Business highlights
5.33.10 Safron Security Revenue
5.34 SAIC
5.35 Scaled Composites
5.36 Schiebel 1003
5.37 Textron
5.38 TRNDlabs
5.39 Wing Looong

Order by Fax - using the form below

Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit
http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct and select the format(s) you require.

<table>
<thead>
<tr>
<th>Product Name:</th>
<th>Drones: Even Trains and Planes Use Remote Control Like Drones, Market Shares, Market Strategies, and Market Forecasts, 2015 to 2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>Web Address:</td>
<td>http://www.researchandmarkets.com/reports/3336273/</td>
</tr>
<tr>
<td>Office Code:</td>
<td>SCH3PU38</td>
</tr>
</tbody>
</table>

Product Formats
Please select the product formats and quantity you require:

<table>
<thead>
<tr>
<th>Quantity</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronic (PDF) -</td>
<td>USD 4000</td>
</tr>
<tr>
<td>Single User:</td>
<td></td>
</tr>
<tr>
<td>Electronic (PDF) -</td>
<td>USD 8000</td>
</tr>
<tr>
<td>Enterprisewide:</td>
<td></td>
</tr>
</tbody>
</table>

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title: [] Mr [] Mrs [] Dr [] Miss [] Ms [] Prof
First Name: ___ Last Name: _______________________________________
Email Address: * _______________________________________
Job Title: ___
Organisation: ___
Address: ___
City: __
Postal / Zip Code: ____________________________________
Country: ___
Phone Number: _______________________________________
Fax Number: ___

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code:

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp