Industrial Robots: Market Shares, Strategies, and Forecasts, Worldwide, 2015 to 2021

Description: Worldwide Industrial Robot markets are poised to achieve significant growth as the automotive early adopter base provides a way for other industries to leverage economies of scale. Industrial Robot infrastructure in one industry makes it easier to extend product sets so that they are more available across all industries, remaking all manufacturing everywhere.

Controllers permit leveraging industrial robot technology to improve automated process via iteration of work cells. Using controllers to leverage efficiencies is an evolving art, extending the current state of the art. Robots can perform tasks at less cost, and do work in a manner that cannot be replicated with human manufacturing workers. Information technology is used to implement the services provided by controllers.

Growth prospects for the industrial robotics industry depend on market opportunity metrics relative to the different industries. Automotive investment levels globally have remained at historical highs. Increasing usage of robotic automation by non-automotive companies is driving the usage of industrial robot automation to a new level.

Increased adoption of industrial robots coupled with a huge push from the industry for collaborative robots, opens opportunities for robotic solutions. In the immediate future industrial robots strengthen the position of every industry, promising more manufacturing efficiency at every level.

The industrial robots have not yet achieved economies of scale, illustrating the market opportunity that will come quickly after economies of scale are achieved. New technology and improved controllers open the path to economies of scale for industrial robots. As this occurs a new industrial revolution will occur. There are massive numbers of products offered by each major industrial robot vendor. Product consolidation is occurring in the market. Customization of a few products to increase product volume hold the promise of changing the market so it functions at a level that means devices that basically have eluded economies of scale in the past, will now be able to be mass produced.

A few leading vendors profiled in the report lead the market. ABB provides a comprehensive range of robots to help manufacturers improve productivity, product quality and worker safety. Regardless of application ABB has a robot to meet needs of the customer in any industry. ABB has installed 250,000 robots worldwide.

ABB's small IRB 120 multipurpose industrial robot weighs 25kg and can handle a payload of 3kg (4kg for vertical wrist) with a reach of 580mm. It is a cost-effective and reliable choice for generating high production outputs in return for low investment. A white finish Clean Room ISO 5 (Class 100) version, certified by IPA, is available.

With a global install base of nearly 300,000 industrial robots, Yaskawa Motoman has over 150 robot arm models currently in production. Well defined criteria help users find a robotic arm that suits industrial applications. Required payload, reach and repeatability specifications are market aspects. Each robotic arm model is paired with a robot controller that enables workers to program and control tasks of a single robot or coordinate multiple robot arms.

Yaskawa. Motoman offers 40 fully integrated, pre-engineered work cell solutions. These work cells include robots, process equipment, and safety equipment. Cost-effective world solutions are available to meet requirements for safety and easy of use. Customers look for industrial robots that are easy to set up and operate. Industrial robots automate manufacturing, starting with automotive factories providing automated process stat is cheaper, more reliable, and proven. Industrial robots are changing the economics of manufacturing and materials handling in all industries. Industrial robots are poised to change every aspect of modern business.

Robots bring a new industrial revolution. Adoption of industrial robots in non-automotive applications is occurring in the electronics, chemicals, pharmaceutical, and food & beverages industries. Industrial robots have opened up new market opportunities. High installation costs have been largely overcome, making industries in developing markets available to vendors. The adoption of robots in underdeveloped countries...
occurs because of the unavailability of skilled labor.

industrial robots are set to bring a new industrial revolution more important than anything seen before. Industrial robots perform repetitive tasks efficiently, they do not eat, they do not make mistakes, they do not get tired, they do what they are told.

Manufacturing plants are frequently long aisles of nothing but robots, no human in sight. Beyond industrial robots that repeat actions, more intelligent robots loaded with sensors, cameras, and intelligent software are able to automate process using controllers to manage action. Use of microprocessors provides a measure of intelligent control over the activity of the robot based on input from the sensors and the cameras.

Think about the current industrial revolution. Before the invention of the automobile, buggy whip manufacturing was a thriving business. No longer. In the same vein, industrial robots hold the promise of eliminating many of the existing jobs in manufacturing. Innovation, centers of excellence. New enterprises promise to replace many of the existing jobs. People need to be flexible, to develop new industries.

Increased adoption of industrial robots coupled with a huge push from the industry for collaborative robots, opens opportunities for robotic solutions. In the immediate future industrial robots strengthen the position of every industry, promising more manufacturing efficiency at every level.

The issue becomes creating jobs and building economies worldwide so people can afford to support a family and a lifestyle and buy the goods that are manufactured so efficiently. This new job creation market thrust will come from industry and government investment in innovation and centers of excellence.

Industrial robots promise to replace 70 to 90% of existing manufacturing jobs. People will learn new ways to achieve an economy, to achieve economic development. An economy needs to adjust, to be flexible if you gave pink slips to more than half the labor force.

According to Susan Eustis, principal author of the market research study, “Industrial robot vendors have discovered that with intelligent use of new technology, they can dominate an aspect of some manufacturing automated process for a particular sector. As the early adopters in the auto industry have proven, robots do the work cheaper and better than humans once a repetitive process has been evolved. Industrial robots make the difference between winning competitive advantage or losing it. Solutions offered by vendors are creating market growth opportunities.”

Industrial robots can perform tasks faster and more accurately than humans. Increases in productivity are provided by industrial robots. Robots help reduce overall manufacturing costs in developing and developed countries. Markets are expected to rise 11.5% annually through 2021. Industrial robot markets at $22 billion in 2014 are anticipated to reach $48.9 billion by 2021.
1.3.4 Tesla's factory
1.3.5 Everyone Will Have Access To A Personal Robot
1.4 Global Economy
1.4.1 Robotics as Key Economic Enabler
1.4.2 US Economy

2. Industrial Robots Market Share and Market Forecasts
2.1 Robot Market Driving Forces
2.1.1 Robots Bring A New Industrial Revolution
2.1.2 Industrial Robot Target Markets
2.1.3 Industrial Robots Third Wave Of Automated Process
2.2 Industrial Robot Market Shares
2.2.1 Industrial Robots Market Shares
2.2.2 ABB
2.2.3 Kuka
2.2.4 Fanuc
2.2.5 Denso
2.2.6 Kawasaki Robotics
2.2.7 Yaskawa
2.2.8 Mitsubishi Electric Corp.
2.2.9 Nachi Fujikoshi Corp.
2.2.10 Pari Robotics
2.2.11 Kuka / Reis Robotics
2.2.12 Automotive Robotics and Systems
2.2.13 Rockwell Automation
2.2.14 Schunk GmbH
2.2.15 Staubli International AG
2.2.16 Toshiba TM Robotics
2.2.17 Yamaha Robotics
2.2.18 Comau
2.2.19 Epson
2.2.20 Industrial Robot Market Share Segment Shipments by Cell Size
2.2.21 Industrial Robot Market Installed Base
2.2.22 General Industrial Robot Markets
2.2.23 Automotive Robot Market Shares
2.2.24 Systems Body-In-White Market Shares,
2.2.25 SCARA Industrial Robot Market Shares,
2.3 Industrial Robot Market Forecasts
2.3.1 Industrial Robots Market Unit Forecasts
2.3.2 Robotic Trends
2.4 Industrial Robots Market Segments
2.4.1 Industrial Robot Market Forecasts, Market Segments: Automotive, Body In White, Food, Beverages, Packaging, Metals, Heavy Machinery, Plastics And Rubber, And Solar / Other
2.4.2 Automobile Industry Industrial Robots
2.4.3 Robot Density in Automotive and General Industry
2.4.4 Industrial Robot Market Forecasts, Market Segments: Welding, Painting, Material Handling, Logistical, Packaging, Palletizing
2.4.5 Industrial Paint Robots
2.4.6 Industrial Paint Robot ROI
2.4.7 Industrial Robot Market Forecasts, Market Segments: Welding Segments,
2.4.8 Industrial Robot Market Forecasts, General Manufacturing and Other Segments
2.4.9 Industrial Robot Market Forecasts, Market Segments: Articulated, Cylindrical, Cartesian, And Scara
2.4.10 Articulated Industrial Robots
2.4.11 Industrial 6-Axis, 5-Axis, and 4-Axis SCARA Robots
2.4.12 Cartesian Industrial Robots
2.4.13 Advanced Industrial Robotics Market Penetration
2.4.14 Industrial Robot Welding
2.4.15 Yaskawa Motoman Robotic Welding and Cutting
2.4.16 Industrial Robot Palletizing
2.4.17 Robotics End User Trends
2.4.18 Foxcomm Doubles Total Robotics Installed Base
2.4.19 Industrial Robot Automated Material Handling
2.5 Industrial Robots ROI
2.6 Industrial Robots Pricing
2.7 Industrial Robots Regional Market Segments
2.7.1 US
2.7.2 Europe
2.7.3 Asia Pacific
2.7.4 Japan
2.7.5 Japan
2.7.6 Chinese Industrial Robots Market
2.7.7 Leading Chinese Mainland Industrial Robot Players
2.7.8 Chinese Industrial Robot Companies
2.7.9 ABB Developing Markets Opportunities

3. Industrial Robot Product Description
3.1 Robotic Manufacturing Equipment
3.1.1 ABB
3.1.2 Kawasaki Robotics
3.1.3 Kuka Automotive Production Complexity
3.1.4 Yaskawa Motoman
3.1.5 Fanuc
3.1.6 Global Industrial Robotics Market Segmentation
3.2 ABB
3.2.1 ABB Process Industry Control Robots
3.2.2 ABB Comprehensive Range Of Robots
3.2.3 ABB IRB 120 For Flexible And Compact Production
3.2.4 ABB IRB 140
3.2.5 ABB IRB 140 Small, Powerful And Fast 6-Axes Robot
3.2.6 ABB IRB 6660 For Press Tending
3.2.7 ABB IRB 6650S Full Vertical And Horizontal Stroke Motion
3.2.8 ABB IRB 360 FlexPicker™
3.2.9 ABB IRB 5500 - FlexPainter
3.2.10 ABB IRB 5500 - FlexPainter
3.2.11 ABB Material Handling Robots
3.2.12 ABB IRB 1200 Material Handling And Machine Tending
3.2.13 ABB Power IRB 7600 Built To Handle Work-Pieces Weighing 500 kg
3.2.14 ABB Symphony Plus
3.2.15 ABB IRB 2600ID Arc Welding
3.2.16 ABB IRB 1520ID Lean Arc Welder
3.2.17 ABB IRB Cost of Ownership Reductions
3.2.18 ABB YuMi
3.2.19 ABB YuMi Robotic Co-Worker
3.2.20 ABB Human - Robot Collaboration
3.2.21 ABB Human - Robot Collaboration
3.2.22 ABB YuMi Dual Arm Robots
3.3 Kuka Robots
3.3.1 Kuka LBR iiWA
3.3.2 Kuka LBR iiWA 7 R800
3.3.3 Kuka LBR iiWA 7 R820
3.3.4 Kuka KR 5 ARC
3.3.5 Kuka KR 16 L6-2
3.3.6 Kuka KR 5-2 ARC HW Specialist Arc Welding
3.3.7 Kuka KR 16-2 F for Tasks In The Glass Industry
3.3.8 Kuka KR 16-2 CF For Industry Including the Cleanroom
3.3.9 Kuka KR 90 R2700 PRO (KR QUANTEC PRO)
3.3.10 Kuka KR 40 PA Palletizing Robot
3.3.11 Kuka 120 R3200 PA
3.3.12 Kuka 1000 1300 TITAN PA
3.3.13 Kuka 1000 L950 TITAN PA
3.3.14 Kuka Customer Production Focus
3.3.15 Kuka Robots in the Industry
3.3.16 Kuka Robots in the Food Processing Industry
3.3.17 Kuka Automation in Agriculture
3.4 Fanuc
3.4.1 Fanuc ARC Mate
3.4.2 Fanuc LR Mate Series
3.4.3 Fanuc F-200iB
3.4.4 Fanuc M-1iA
3.4.5 Fanuc M-2iA
3.4.6 Fanuc M-3iA
3.4.7 Fanuc M-10iA
3.4.8 Fanuc M-20iA
3.4.9 Fanuc M-410iA
3.4.10 Fanuc M-410iC
3.4.11 Fanuc M-420iA
3.4.12 Fanuc M-430iA
3.4.13 Fanuc M-710iA
3.4.14 Fanuc M-900iA
3.4.15 Fanuc M-900iB
3.4.16 Fanuc M-2000iA
3.4.17 Fanuc Paint Robots
3.4.18 Fanuc R-1000iA
3.4.19 Fanuc R-2000iB
3.4.20 Fanuc R-2000iC
3.4.21 FANUC
3.4.22 Fanuc Vegetable Sorting Robot
3.4.23 FANUC Robodrill DiA5 Series
3.5 Denso Wave
3.5.1 Denso HS-G Series
3.5.2 Denso HM-G Series
3.5.3 Denso VM-G Series
3.5.4 Denso VS-G Series
3.5.5 Denso New VS-G Series
3.5.6 Denso VP-G Series
3.5.7 Denso XR-G Series
3.6 Yaskawa Motoman
3.6.1 Yaskawa Motoman Arc Welding Robots
3.6.2 Yaskawa Motoman 7-Axis Robotic Welding Arm
3.6.3 Yaskawa Motoman Spot Welding Robots
3.6.4 Yaskawa Motoman Assembly Robots
3.6.5 Yaskawa Motoman Material Cutting Robot
3.6.6 Yaskawa Motoman Die Casting Robots
3.6.7 Yaskawa Motoman Dispensing Robots
3.6.8 Yaskawa Motoman Machining Robots
3.6.9 Yaskawa Motoman Material Removal Robots
3.6.10 Yaskawa Motoman Press Tending Robots
3.6.11 Yaskawa Motoman Robots for Warehouse Distribution Centers
3.6.12 Yaskawa Motoman Machine Tending Robots
3.6.13 Yaskawa Motoman Robotic Palletizer Models
3.6.14 Yaskawa Motoman Part Transfer Robots
3.6.15 Yaskawa Motoman Robots for Primary and Secondary Packaging
3.6.16 Yaskawa Motoman Clinical Lab Robots
3.6.17 Yaskawa Motoman Analytic Specimen Capabilities
3.6.18 Yaskawa Motoman AutoSorter™
3.6.19 Yaskawa Motoman Painting Robots
3.6.20 Yaskawa Motoman Robot Painting to Specifications
3.7 Stäubli Robotics: Innovative SCARA and 6-Axis Robots And Software Solutions
3.7.1 Staubli TP80 Fast Picker Robot
3.7.2 Staubli TS40 SCARA robot
3.7.3 Staubli TS60 SCARA robot
3.7.4 Staubli TS80 SCARA robot
3.7.5 Staubli TX40 6-Axis Industrial Robot
3.7.6 Staubli TX2-40 6-Axis Industrial Robot
3.7.7 Staubli TX60 6-Axis Industrial Robots
3.7.8 Staubli TX2-60 6-Axis Industrial Robots
3.7.9 Staubli TX90 6-Axis Industrial Robot
3.7.10 Staubli TX2-90 6-Axis Industrial Robot
3.7.11 Staubli RX160 6-Axis Industrial Robot
3.7.12 Staubli TX200 6-Axis Heavy Payload Robot
3.7.13 Staubli TX340 SH Industrial Robot
3.7.14 Staubli Painting Robots
3.8 Logistics Services Robots
3.8.1 Amazon Kiva Mobile-Robotic Fulfillment System
3.8.2 Swisslog WarehouseRunner for Storage and Retrieval: Increase Efficiency Throughout the Warehouse
3.8.3 C&D Robotics ATL Automatic Truck Loading
3.8.4 Motoman Robotic Truck Unloading and Mixed-Case Depalletizing
3.8.5 Yaskawa Motoman Packaging
3.8.6 Yaskawa Motoman Palletizing
3.9 Adept Technology Inc.
3.9.1 Adept SCARA Robot - Adept Cobra ePLC800 Inverted SCARA 4-Axis Robot
3.9.2 Adept Parallel Robot (Delta Robot): Adept Quattro ePLC800H
3.9.3 Adept Six-Axis Robot - Adept Viper ePLC850
3.9.4 Adept Linear Modules - Adept Python
3.10 Aurotek Corp.
3.10.1 Aurotek Automation & Robotics
3.10.2 Aurotek Actuator
3.10.3 Aurotek Motion Controller
3.11 Axium Inc.
3.11.1 Axium Palletizing Solutions - Axium IxOFlex - Scalable
3.11.2 Axium IxOFlex - T - Tissue Palletizing Solution
3.11.3 Axium EOP - End of Press Robotic Palletizing
3.11.4 Axium RRFlex - Rail Mounted Palletizing Solution
3.11.5 Axium ROP - Mixed Load Palletizing
3.11.6 Axium WrapBotic - Palletizing and Wrapping Solution For Unstable Loads
3.11.7 Axium Depalletizing Solutions: Axium DP500 Sorter - Robotic Folding Carton Sorter
3.11.8 Axium DP240 - Layer Depalletizer
3.11.9 Axium DP500 Feeder - Robotic Folding Carton Feeder
3.11.10 Axium CIS - Case Measuring & Inspection System
3.11.11 Axium Case Packing Solutions: Axium BD-X-65 - Tissue Box Collating Solution
3.11.12 Axium CP-4X - Case Packer 4 axis
3.11.13 Axium CP-6X - Case Packer 6 Axis
3.11.14 Axium MP900 - Mixed Case Packing
3.12 Daifen Corp.
3.12.1 Daifen FD-V6 STANDARD ARC WELDING ROBOT
3.12.2 Daifen FD-V6L Long Reach Arc Welding Robot
3.12.3 Daifen FD-B4 Through-Arm Cable ARC Welding Robot
3.12.4 Daifen FD-B4L EXTENDED REACH THROUGH-ARM CABLE ARC WELDING ROBOT
3.12.5 Daifen FD-H5 Compact ARC Welding Robot
3.12.6 Daifen FD-V20 LONG REACH ARC WELDING ROBOT
3.13 Ellison Technologies.
3.13.1 Ellison Bulk Mail Handling
3.13.2 Ellison Robot Swing Boom
3.13.3 Ellison Tilt/Rotate Table
3.13.4 Ellison Headstock/Tailstock
3.13.5 Ellison Index Tables
3.13.6 Fanuc/Ellison Vision
3.13.7 Ellison Gripper Systems
3.14 Mitsubishi Electric Corp.
3.14.1 Mitsubishi Vertical Type Robots
3.15 Nachi Fujikoshi Corp.
3.15.1 Nachi SRA100/166/210/166L/120EL
3.15.2 Nachi SRA166/210-01A
3.15.3 Nachi SRA100H/SRA133HL
3.15.4 Nachi SRA100B/100J
3.15.5 Nachi Arc Welding NB/NV Series
3.15.6 Nachi SC series SC700
3.15.7 Nachi SC series SC500
3.15.8 Nachi SC series SC400L
3.15.9 Nachi MC350/MC280/MC470P
3.15.10 Nachi SC series SC400LC
3.15.11 Nachi ST133CF/166CF/210CF-01
3.15.12 Nachi SJ80C-18D/24D, SJ120C-28D/28S
3.15.13 Nachi Compact and Super Fast Robot - MZ04
3.15.14 Nachi MZ07 - the World's Fastest Lightweight, Compact Robot
3.15.15 Nachi ST210TP
3.15.16 Nachi LP130/180/210-01
3.15.17 Nachi MR35/50
3.15.18 Nachi MR20/20L
3.15.19 Nachi MC35/50/70
3.15.20 Nachi MC20/MC10L
3.15.21 Nachi MC12S
3.15.22 Nachi SRA100/166/210/166L/120EL
3.16 Epson Robots
3.17 Pari Robotics
3.17.1 Pari Gantry Robots
3.17.2 Pari Portal Robots
3.17.3 Pari Robot Transporters
3.18 Reis Robotics
3.18.1 Reis VERTICAL ARTICULATED ARM
3.18.2 Reis Linear Kinematics
3.18.3 Reis Horizontal Articulated Arm
3.18.4 Reis Hybrid Kinematics
3.18.5 Reis ROBOTSTAR VI - THE STAR AMONG ROBOT CONTROLS
3.19 Rockwell Automation Inc.
3.19.1 Rockwell Robotic Solutions
3.19.2 Rockwell Packaging
3.19.3 Rockwell Cartoner
3.19.4 Rockwell Case Packer
3.19.5 Rockwell Horizontal Flow Wrapper
3.19.6 Rockwell Vertical Form, Fill & Seal
3.19.7 Rockwell Material Handling
3.19.8 Rockwell Conveyors
3.19.9 Developments by Cisco and Rockwell Automation
3.19.10 Rockwell Palletizing
3.19.11 Rockwell Sortation
3.19.12 Rockwell Factory Machines
3.20 Schunk GmbH
3.20.1 SCHUNK Mobile Gripping Systems.
3.20.2 SCHUNK Clamping Technology
3.20.3 SCHUNK Gripping Systems
3.21 Toshiba Machine TM Robotics
3.21.1 Toshiba Machine TM SCARA THP550
3.21.2 TM SCARA THP700
3.21.3 TM SCARA TH1050A
3.21.4 TM SCARA THL1000
3.22 Yamaha Robotics
3.22.1 Yamaha YK600XGL
3.22.2 Yamaha YK500TW
3.22.3 Yamaha YK1200X
3.22.4 Yamaha YK1000XGS
3.22.5 Yamaha YK1000XC
3.23 Kawasaki Robotics
3.24 Universal Robots
3.25 MIT Autonomous Gardener Equipment Mounted On The Base of a Roomba

4. Industrial Robot Technology
4.1 SCARA Robots
4.1 Nanotechnology
4.2 Sensor Technology
4.2.1 Robot System Architecture
4.2.2 Automation Technology Replaces Manual Labor Tasks
4.2.3 Behavior-Based Robotics
4.2.4 Proprietary Sensor Technology
4.2.5 System Design & Architecture
4.3 Welding Robots
4.4 Material Handling Robots:
4.5 Painting Robots
4.5.1 Paint Robots
4.6 Plasma Cutting Robots:
4.7 Robotic Assistants: Co-Robots
4.7.1 Low-Cost Robots Baxter, UR5 and UR10 for Small And Medium Business (SMEs)
4.8 Industrial Robots Degrees-Of-Freedom
4.8.1 Motion characteristics
4.8.2 Continuous Path Robots
4.8.3 Accuracy and repeatability
4.9 Robotics and Automation Scope and Standards
4.9.1 Use Of Standard Industrial Robots
4.9.2 IEEE Standards Initiatives Affecting Industrial Robots

5 Robot Company Description
5.1 ABB Robotics
5.1.1 ABB and IO Deliver Direct Current-Powered Data Center Module
5.1.2 ABB / Validus DC Systems DC Power Infrastructure Equipment
5.1.3 ABB Technology
5.1.4 ABB Global Lab Power
5.1.5 ABB Global Lab Automation
5.1.6 ABB Strategy
5.1.7 ABB Global Leader In Power And Automation Technologies
5.1.8 ABB Power Products
5.1.9 ABB Power Systems
5.1.10 ABB Customers
5.1.11 ABB Partners
5.1.12 ABB Discrete Automation and Motion
5.1.13 ABB Low Voltage Products
5.1.14 ABB Process Automation
5.2 Adept Technology
5.2.1 Adept Technology Leading Provider Of Intelligent Vision-Guided Robotics
5.3 American Robot Corporation
5.4 Anhui Efort Intelligent Equipment
5.5 Apex Automation
5.6 Arotech
5.6.1 Arotech's Power Systems Division (APSD)
5.7 Apex Automation and Robotics
5.8 Association for Advancing Automation (A3)
5.9 Aurotek
5.9.1 Aurotek's Training and Simulation Division (ATSD)
5.9.2 Aurotek Target Markets
5.10 Axium
5.11 BAE Systems
5.11.1 BAE Systems Organization
5.11.2 BAE Systems Performance
5.11.3 BAE Systems Key Facts
5.11.4 BAE Systems Strategy
5.11.5 BAE Systems Operational Framework
5.11.6 Key Performance Indicators (KPIs)
5.11.7 BAE Systems Risk Management
5.12 Changzhou Mingseal Robotic Technology
5.13 Daimler AG/Mercedes-Benz
5.13.1 Daimler AG Revenue
5.14 Denso Wave **
5.14.1 Denso Development Network
5.15 DJI Innovation
5.16 DMG Mori Ellison Technologies**
5.16.1 DMG Mori Ellison Technologies Brings Mastery Of Advanced Manufacturing Technology
5.17 Durr
5.18 EBZ
5.19 ECA Robotics
5.20 Elbit Systems
5.20.1 Elbit Systems Principal Market Environment
5.20.2 Elbit Systems
5.21 Epson
5.21.1 Epson Automation on Assembly Lines Using Robots
5.22 Evtatran Group
5.23 Fanuc
5.23.1 FANUC Corporation
5.23.2 Fanuc Revenue
5.23.3 Fanuc Joint Venture With General Electric in the FA field
5.24 Fiat / Comau
5.25 Fuji Heavy Industries
5.25.1 Subaru Automotive Business
5.25.2 Subaru of America
5.26 GSK
5.27 Harbin BOSHI Automation
5.28 Harbin Haier & HIT Robot Technology
5.29 Harmonic Drive Systems
5.29.1 Applications for Harmonic Drive products:
5.29.2 Harmonic Drive Servo Actuators
5.29.3 Harmonic Drive Gearheads
5.29.4 Harmonic Planetary® Gearhead
5.30 HuaHeng Welding
5.31 Hyundai Heavy Industries
5.32 International Federation of Robotics (IFR)
5.33 Kawasaki Robotics
5.34 Kuka
5.34.1 KUKA Dominant Customer Segment, Automotive Industry
5.34.2 Kuka Revenue
5.34.3 Kuka Competition
5.34.4 Kuka Innovative Technology
5.34.5 Kuka Well Positioned With A Broad Product Portfolio In Markets With Attractive Growth Prospects
5.34.6 Kuka Strategy
5.34.7 Kuka Corporate Policy
5.34.8 Kuka Customers
5.34.9 KUKA Acquires 51% of Reis Robotics
5.34.10 Kuka Positioning in Robotics and Systems
5.35 MESNAC
5.36 Mitsubishi
5.36.1 Mitsubishi Electric Corp.
5.37 Nabtesco
5.38 Nachi Fujikoshi Corp.
5.38.1 Nachi Fujikoshi Business
5.39 National Institute of Standards and Technology
5.40 Osaka Transformer Company OTC / Daihen
5.40.1 Daihen Innovative Technology
5.40.2 Daihen
5.41 Panasonic
5.41.1 Sanyo
5.41.1 SANYO 2011 Sales Of Solar Photovoltaic Systems
5.41.2 Panasonic / Sanyo Solar Ark
5.41.3 Panasonic /Sanyo Solar Stone Brewing Company Reference Account
5.41.4 Panasonic / Sanyo Solar LumenHAUS Reference Account
5.41.5 i nSpec / SANYO
5.41.6 SANYO and InSpec Group Partnership Generates Multiple Solar Installations in Oregon
5.42 Pari Robotics
5.43 Pedsco
5.44 Re2, Inc
5.44.1 Re Leading Developer
5.44.2 Re2 Forerunner High Speed Inspection Robot
5.44.3 Re2 ForeRunner RDV
5.44.4 Re2 HST - High-Speed Teleoperation
5.45 ReconRobotics
5.45.1 ReconRobotics Tactical, Micro-Robot Systems
5.46 Reis Robotics
5.46.1 Reis Robotics Foundry Systems, Laser Applications, Arc Welding, And Photovoltaics
5.46.1 Reis Robot Systems And Process-Oriented System Solutions
5.47 Rethink Robotics
5.48 Robosoft
5.49 Robotic Industries Association (RIA)
5.50 Rockwell Automation
5.50.1 Rockwell Automation Operating Segments
5.50.2 Rockwell Automation Long-term Strategy
5.50.3 Rockwell Automation Acquisitions
5.50.4 Rockwell Automation Profile
5.51 Schunk GmBH
5.52 Shanghai STEP Electric
5.52.1 Step Industrial Automation, Electric Drive, Energy, And Environmental Protection
5.53 Shenzhen Jasic Technology
5.53.1 Jasic Integrated Welding Solution Provider
5.53.2 Jasic Integrated Welding Solution Target Markets
5.53.3 Jasic Integrated Welding Solutions
5.54 Shibuya Seiki
5.54.1 Shibuya Kogyo Pharmaceutical Application Examples
5.54.2 Shibuya Kogyo Robotic System For Handling Soft Infusion Bags
5.54.3 Shibuya Kogyo Robotic Cell Culture System "CellPRO"
5.54.4 Shibuya Kogyo Robotic System For Leaflet & Spoon Placement
5.54.5 Shibuya Kogyo Robotic Collating System
5.54.6 Shibuya Kogyo Automated Aseptic Environmental Monitoring System
5.55 SDR Tactical Robot
5.56 SIASUN Robot & Automation
5.57 Stäubli
5.57.1 Stäubli Industrial Robots
5.57.2 Stäubli Controllers
5.57.3 Stäubli Software
5.57.4 Typical applications of Stäubli robots
5.57.5 Staubli International AG
5.58 Tangshan Kaiyuan Group / Tangshan Kaiyuan Welding (TKSW)
5.59 Thyssen
5.60 Toshiba
5.60.1 Toshiba Machine
5.60.2 TM Robotics Europe
5.60.3 TM Robotics Americas
5.61 Universal Robots
5.62 VDE
5.63 Yamaha
5.63.1 Yamaha Robotics
5.64 Yaskawa
5.64.1 Yaskawa Revenue
5.64.2 Yaskawa Business
5.64.3 YASKAWA Electric Motion Control
5.64.4 YASKAWA Electric Robotics
5.64.5 YASKAWA Electric System Engineering
5.64.6 YASKAWA Electric Information Technology
5.64.7 Yaskawa / Motoman
5.64.8 Yaskawa Motoman
5.65 Selected Robot Companies
5.65.1 Selected Robot Companies
Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct and select the format(s) you require.

Web Address: http://www.researchandmarkets.com/reports/3346293/
Office Code: SCBRO3AJ

Product Formats
Please select the product formats and quantity you require:

<table>
<thead>
<tr>
<th>Product Formats</th>
<th>Quantity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronic (PDF) - Single User</td>
<td></td>
<td>USD 4000</td>
</tr>
<tr>
<td>Electronic (PDF) - Enterprisewide</td>
<td></td>
<td>USD 8000</td>
</tr>
</tbody>
</table>

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title: Mr Mrs Dr Miss Ms Prof
First Name: ______________________ Last Name: ______________________
Email Address: * ______________________
Job Title: ______________________
Organisation: ______________________
Address: ______________________
City: ______________________
Postal / Zip Code: ______________________
Country: ______________________
Phone Number: ______________________
Fax Number: ______________________

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: __________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp