Process Design Strategies for Biomass Conversion Systems

Description: This book covers recent developments in process systems engineering (PSE) for efficient resource use in biomass conversion systems. It provides an overview of process development in biomass conversion systems with focus on biorefineries involving the production and coproduction of fuels, heating, cooling, and chemicals. The scope includes grassroots and retrofitting applications. In order to reach high levels of processing efficiency, it also covers techniques and applications of natural-resource (mass and energy) conservation. Technical, economic, environmental, and social aspects of biorefineries are discussed and reconciled. The assessment scales vary from unit- to process- and life-cycle or supply chain levels.

The chapters are written by leading experts from around the world, and present an integrated set of contributions. Providing a comprehensive, multi-dimensional analysis of various aspects of bioenergy systems, the book is suitable for both academic researchers and energy professionals in industry.

Contents:

List of Contributors xiii
Preface xvii
Acknowledgments xxi

Part 1 Process Design Tools for Biomass Conversion Systems 1

1 Early –Stage Design and Analysis of Biorefinery Networks 3
Peam Cheali, Alberto Quaglia, Carina L. Gargalo, Krist V. Gernaey, Gürkan Sin, and Rafiqul Gani

1.1 Introduction 3
1.2 Framework 5
1.2.1 Sustainability Analysis 10
1.2.2 Environmental Impact Assessment 12
1.3 Application: Early –Stage Design and Analysis of a Lignocellulosic Biorefinery 15
1.3.1 Biorefinery Networks and Identification of the Optimal Processing Paths 15
1.3.2 Sustainability Analysis with Respect to Resource Consumption and Environmental Impact 29
1.4 Conclusion 34
Nomenclature 35
References 37

2 Application of a Hierarchical Approach for the Synthesis of Biorefineries 39
Carolina Conde –Mejía, Arturo Jiménez –Gutiérrez, and Mahmoud M. El –Halwagi

2.1 Introduction 39
2.2 Problem Statement 41
2.3 General Methodology 42
2.4 Simulation of Flowsheets 44
2.5 Results and Discussion 49

2.5.1 Level 1 49

2.5.2 Level 2 51

2.5.3 Level 3 51

2.5.4 Level 4 53

2.5.5 Level 5 55

2.5.6 Level 6 56

2.6 Conclusions 57

References 57

3 A Systematic Approach for Synthesis of an Integrated Palm Oil –Based Biorefinery 63
Rex T. L. Ng and Denny K. S. Ng

3.1 Introduction 63

3.2 Problem Statement 66

3.3 Problem Formulation 67

3.4 Case Study 70

3.5 Conclusions 75

References 75

4 Design Strategies for Integration of Biorefinery Concepts at Existing Industrial Process Sites: Case Study of a Biorefinery Producing Ethylene from Lignocellulosic Feedstock as an Intermediate Platform for a Chemical Cluster 77
Roman Hackl and Simon Harvey

4.1 Introduction 77

4.1.1 Biorefinery Concepts 77

4.1.2 Advantages of Co-locating Biorefinery Operations at an Industrial Cluster Site 79

4.1.3 Ethylene Production from Biomass Feedstock 79

4.1.4 Design Strategy 82

4.2 Methodology 84

4.2.1 Process Simulation 85

4.2.2 Performance Indicator for Heat Integration Opportunities 88

4.3 Results 90

4.3.1 Process Simulation 90

4.3.2 Integration of Separate Ethanol and Ethylene Production Processes 90

4.3.3 Material and Heat Integration of the Two Processes 92

4.3.4 Integration Opportunities with the Existing Chemical Cluster 93
Xylitol 309
Aikaterini D. Mountraki, Konstantinos R. Koutsospyros, and Antonis C. Kokossis

12.1 Introduction 309
12.2 Motivating Example 310
12.3 The Three Layer Approach 310
12.4 Production Paths to Xylitol 313
12.4.1 Catalytic Process 315
12.4.2 Biotechnological Process 316
12.5 Scope for Process and Energy Integration 317
12.5.1 Catalytic Process 318
12.5.2 Biotechnological Process 320
12.5.3 Summarizing Results 322
12.6 Conclusion 325
Acknowledgment 325
References 325

13 Determination of Optimum Condition for the Production of Rice Husk-Derived Biooil by Slow Pyrolysis Process 329
Suzana Yusup, Chung Loong Yiin, Chiang Jinn Tan, and Bawadi Abdullah

13.1 Introduction 329
13.2 Experimental Study 331
13.2.1 Biomass Preparation and Characterization 331
13.2.2 Experimental Procedure 332
13.2.3 Equipment 332
13.2.4 Characterization of Biooil 333
13.3 Results and Discussion 333
13.3.1 Characterization of RH 333
13.3.2 Characterization of Biooil 333
13.3.3 Parametric Analysis 335
13.3.4 Field Emission Scanning Electron Microscope 336
13.3.5 Chemical Composition (GC–MS) Analysis 337
13.4 Conclusion 338
Acknowledgement 339
References 339
14 Overview of Safety and Health Assessment for Biofuel Production Technologies 341
Mimi H. Hassim, Weng Hui Liew, and Denny K. S. Ng

14.1 Introduction 341
14.2 Inherent Safety in Process Design 343
14.3 Inherent Occupational Health in Process Design 344
14.4 Design Paradox 345
14.5 Introduction to Biofuel Technologies 347
14.6 Safety Assessment of Biofuel Production Technologies 348
14.7 Health Assessment of Biofuel Production Technologies 350
14.8 Proposed Ideas for Future Safety and Health Assessment in Biofuel Production Technologies 351
14.9 Conclusions 354

References 354
Index 359

Ordering: Order Online - http://www.researchandmarkets.com/reports/3387114/
Order by Fax - using the form below
Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

Product Name: Process Design Strategies for Biomass Conversion Systems
Web Address: http://www.researchandmarkets.com/reports/3387114/
Office Code: SCDKELDH

Product Format
Please select the product format and quantity you require:

<table>
<thead>
<tr>
<th>Quantity</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard Copy (Hard Back):</td>
<td>USD 162 + USD 29 Shipping/Handling</td>
</tr>
</tbody>
</table>

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in BLOCK CAPITALS

<table>
<thead>
<tr>
<th>Title:</th>
<th>Mr ☐</th>
<th>Mrs ☐</th>
<th>Dr ☐</th>
<th>Miss ☐</th>
<th>Ms ☐</th>
<th>Prof ☐</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Name:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Last Name:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Email Address: *</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Job Title:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organisation:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Address:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>City:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Postal / Zip Code:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phone Number:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fax Number:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code: __________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World