Atmospheric Chemistry and Physics. From Air Pollution to Climate Change.
3rd Edition

Description: Expanded and updated with new findings and new features

Since the second edition of Seinfeld and Pandis' classic textbook, significant progress has taken place in the field of atmospheric chemistry and physics, particularly in the areas of tropospheric chemistry, aerosols, and the science of climate change. A new edition of this comprehensive work has been developed by the renowned author team. Atmospheric Chemistry and Physics, 3rd Edition, as the previous two editions have done, provides a rigorous and comprehensive treatment of the chemistry and physics of the atmosphere including the chemistry of the stratosphere and troposphere, aerosol physics and chemistry, atmospheric new particle formation, physical meteorology, cloud physics, global climate, statistical analysis of data, and mathematical chemical/transport models of the atmosphere. Each of these topics is covered in detail and in each area the central results are developed from first principles. In this way the reader gains a significant understanding of the science underlying atmospheric processes and will be able to extend theories and results to solving real world problems.

The 3rd edition includes new chapters on Atmospheric Organic Aerosols and Global Climate, as well as a significantly updated chapter on Physical Meteorology. Many chapters and topics have been updated and expanded from the Second Edition, including the Chemistry of Biogenic Hydrocarbons in the Troposphere, especially Isoprene Chemistry; Aqueous–Phase Organic Chemistry; mechanisms of Nucleation in the Atmosphere; Aerosol–Cloud relationships; and Chemistry of Mercury. A new section on Positive Matrix Factorization is included that carefully develops this powerful statistical method for aerosol data analysis.

New problems have been added, especially ones at a basic level, to increase the utility of this text in classroom situations.

All chapters develop results based on fundamental principles, enabling the reader to build a solid understanding of the science underlying atmospheric processes. Readers familiar with the book will discover a text with many new and revised additions.

Atmospheric Chemistry and Physics, 3rd Edition is an ideal textbook for upper-level undergraduate and graduate students, as well as a reference for researchers in environmental and atmospheric science, chemistry, meteorology, and civil and environmental engineering.

John H. Seinfeld is Louis E. Nohl Professor at the California Institute of Technology. He is a member of the U.S. National Academy of Engineering, the U.S. National Academy of Sciences, and a Fellow of the American Academy of Arts and Sciences. He is the recipient of numerous honors and awards, including the American Chemical Society Award for Creative Advances in Environmental Science and Technology, the NASA Public Service Award, the Nevada Medal, the Fuchs Award, and the 2012 Tyler Prize.

Spyros N. Pandis is Professor of Chemical Engineering at the University of Patras, Greece, and Research Professor of Chemical Engineering and Engineering and Public Policy at Carnegie Mellon University. He is the recipient of the Whitby Award by the American Association for Aerosol Research and the European Research Council Advanced Investigator IDEAS award. He is a Fellow of the American Association for Aerosol Research.

Contents:

Preface to the First Edition xxiii

Preface to the Third Edition xxv

PART I | The Atmosphere and Its Constituents

Chapter 1 | The Atmosphere 3

1.1 History and Evolution of Earth's Atmosphere 3
1.2 Climate 5
1.3 Layers of the Atmosphere 5
1.4 Pressure in the Atmosphere 7
1.4.1 Units of Pressure 7
1.4.2 Variation of Pressure with Height in the Atmosphere 7
1.5 Temperature in the Atmosphere 10
1.6 Expressing the Amount of a Substance in the Atmosphere 10
1.7 Airborne Particles 14
1.8 Spatial and Temporal Scales of Atmospheric Processes 14
Problems 16
References 17
Chapter 2 | Atmospheric Trace Constituents 18
2.1 Atmospheric Lifetime 19
2.2 Sulfur–Containing Compounds 23
2.2.1 Dimethyl Sulfide (CH3SCH3) 26
2.2.2 Carbonyl Sulfide (OCS) 26
2.2.3 Sulfur Dioxide (SO2) 27
2.3 Nitrogen–Containing Compounds 27
2.3.1 Nitrous Oxide (N2O) 28
2.3.2 Nitrogen Oxides (NOx=NO+NO2) 29
2.3.3 Reactive Odd Nitrogen (NOy) 30
2.3.4 Ammonia (NH3) 31
2.3.5 Amines 32
2.4 Carbon–Containing Compounds 32
2.4.1 Classification of Hydrocarbons 32
2.4.2 Methane 34
2.4.3 Volatile Organic Compounds 36
2.4.4 Biogenic Hydrocarbons 36
2.4.5 Carbon Monoxide 39
2.4.6 Carbon Dioxide 40
2.5 Halogen–Containing Compounds 40
6.10.2 Alkenes 222
6.10.3 Aromatics 228
6.10.4 Aldehydes 230
6.10.5 Ketones 230
6.10.6 Ethers 231
6.10.7 Alcohols 231
6.10.8 Tropospheric Lifetimes of Organic Compounds 232
6.11 Atmospheric Chemistry of Biogenic Hydrocarbons 233
6.11.1 Atmospheric Chemistry of Isoprene 233
6.11.2 Monoterpenes (-Pinene) 241
6.12 Atmospheric Chemistry of Reduced Nitrogen Compounds 244
6.12.1 Amines 245
6.12.2 Nitriles 246
6.12.3 Nitrites 246
6.13 Atmospheric Chemistry (Gas Phase) of Sulfur Compounds 246
6.13.1 Sulfur Oxides 246
6.13.2 Reduced Sulfur Compounds (Dimethyl Sulfide) 247
6.14 Tropospheric Chemistry of Halogen Compounds 249
6.14.1 Chemical Cycles of Halogen Species 249
6.14.2 Tropospheric Chemistry of CFC Replacements: Hydrofluorocarbons (HFCs) and Hydrochlorofluorocarbons (HCFCs) 251
6.15 Atmospheric Chemistry of Mercury 253

Appendix 6 Organic Functional Groups 254
Problems 256

Chapter 7 | Chemistry of the Atmospheric Aqueous Phase 265
7.1 Liquid Water in the Atmosphere 265
7.2 Absorption Equilibria and Henry's Law 268
7.3 Aqueous–Phase Chemical Equilibria 271
7.3.1 Water 271
7.3.2 Carbon Dioxide–Water Equilibrium 272
7.3.3 Sulfur Dioxide–Water Equilibrium 274
8.1.3 Distributions Based on ln Dp and log Dp 331
8.1.4 Relating Size Distributions Based on Different Independent Variables 333
8.1.5 Properties of Size Distributions 334
8.1.6 Definition of the Lognormal Distribution 335
8.1.7 Plotting the Lognormal Distribution 338
8.1.8 Properties of the Lognormal Distribution 339
8.2 Ambient Aerosol Size Distributions 342
8.2.1 Urban Aerosols 343
8.2.2 Marine Aerosols 344
8.2.3 Rural Continental Aerosols 347
8.2.4 Remote Continental Aerosols 348
8.2.5 Free Tropospheric Aerosols 348
8.2.6 Polar Aerosols 349
8.2.7 Desert Aerosols 349
8.3 Aerosol Chemical Composition 352
8.4 Spatiotemporal Variation 354
Problems 357
References 359

Chapter 9 | Dynamics of Single Aerosol Particles 362
9.1 Continuum and Noncontinuum Dynamics: the Mean Free Path 362
9.1.1 Mean Free Path of a Pure Gas 363
9.1.2 Mean Free Path of a Gas in a Binary Mixture 365
9.2 The Drag on a Single Particle: Stokes Law 368
9.2.1 Corrections to Stokes Law: the Drag Coefficient 371
9.2.2 Stokes Law and Noncontinuum Effects: Slip Correction Factor 371
9.3 Gravitational Settling of an Aerosol Particle 372
9.4 Motion of an Aerosol Particle in an External Force Field 376
9.5 Brownian Motion of Aerosol Particles 376
9.5.1 Particle Diffusion 379
9.5.2 Aerosol Mobility and Drift Velocity 381
9.5.3 Mean Free Path of an Aerosol Particle 384
9.6 Aerosol and Fluid Motion 385
Chapter 9 | Dynamics of Aerosol Particles

9.6.1 Motion of a Particle in an Idealized Flow (90° Corner) 386
9.6.2 Stop Distance and Stokes Number 387
9.7 Equivalent Particle Diameters 388
9.7.1 Volume Equivalent Diameter 388
9.7.2 Stokes Diameter 390
9.7.3 Classical Aerodynamic Diameter 391
9.7.4 Electrical Mobility Equivalent Diameter 393
Problems 393
References 394

Chapter 10 | Thermodynamics of Aerosols 396

10.1 Thermodynamic Principles 396
10.1.1 Internal Energy and Chemical Potential 396
10.1.2 The Gibbs Free Energy G 398
10.1.3 Conditions for Chemical Equilibrium 400
10.1.4 Chemical Potentials of Ideal Gases and Ideal–Gas Mixtures 402
10.1.5 Chemical Potential of Solutions 404
10.1.6 The Equilibrium Constant 408
10.2 Aerosol Liquid Water Content 409
10.2.1 Chemical Potential of Water in Atmospheric Particles 411
10.2.2 Temperature Dependence of the DRH 412
10.2.3 Deliquescence of Multicomponent Aerosols 415
10.2.4 Crystallization of Single– and Multicomponent Salts 419
10.3 Equilibrium Vapor Pressure Over a Curved Surface: the Kelvin Effect 419
10.4 Thermodynamics of Atmospheric Aerosol Systems 423
10.4.1 The H2SO4 H2O System 423
10.4.2 The Sulfuric Acid Ammonia Water System 427
10.4.3 The Ammonia Nitric Acid Water System 430
10.4.4 The Ammonia Nitric Acid Sulfuric Acid Water System 434
10.4.5 Other Inorganic Aerosol Species 439
10.4.6 Organic Aerosol 440
10.5 Aerosol Thermodynamic Models 440
12.1.1 The Continuum Regime 493
12.1.2 The Kinetic Regime 497
12.1.3 The Transition Regime 497
12.1.4 The Accommodation Coefficient 500
12.2 Mass Transport Limitations in Aqueous–Phase Chemistry 503
12.2.1 Characteristic Time for Gas–Phase Diffusion to a Particle 505
12.2.2 Characteristic Time to Achieve Equilibrium at the Gas–Liquid Interface 506
12.2.3 Characteristic Time of Aqueous Dissociation Reactions 508
12.2.4 Characteristic Time of Aqueous–Phase Diffusion in a Droplet 510
12.2.5 Characteristic Time for Aqueous–Phase Chemical Reactions 511
12.3 Mass Transport and Aqueous–Phase Chemistry 511
12.3.1 Gas–Phase Diffusion and Aqueous–Phase Reactions 512
12.3.2 Aqueous–Phase Diffusion and Reaction 514
12.3.3 Interfacial Mass Transport and Aqueous–Phase Reactions 515
12.3.4 Application to the S(IV) Ozone Reaction 517
12.3.5 Application to the S(IV) Hydrogen Peroxide Reaction 519
12.3.6 Calculation of Aqueous–Phase Reaction Rates 520
12.3.7 An Aqueous–Phase Chemistry/Mass Transport Model 525
12.4 Mass Transfer to Falling Drops 526
12.5 Characteristic Time for Atmospheric Aerosol Equilibrium 527
12.5.1 Solid Aerosol Particles 528
12.5.2 Aqueous Aerosol Particles 529
Appendix 12 Solution of the Transient Gas–Phase Diffusion Problem: Equations (12.4) (12.7) 532
Problems 533
References 535
Chapter 13 | Dynamics of Aerosol Populations 537
13.1 Mathematical Representations of Aerosol Size Distributions 537
13.1.1 Discrete Distribution 537
13.1.2 Continuous Distribution 538
13.2 Condensation 538
13.2.1 The Condensation Equation 538
13.2.2 Solution of the Condensation Equation 540
13.3 Coagulation 544
13.3.1 Brownian Coagulation 544
13.3.2 The Coagulation Equation 551
13.3.3 Solution of the Coagulation Equation 553
13.4 The Discrete General Dynamic Equation 557
13.5 The Continuous General Dynamic Equation 558
Appendix 13.1 Additional Mechanisms of Coagulation 560
13A.1 Coagulation in Laminar Shear Flow 560
13A.2 Coagulation in Turbulent Flow 560
13A.3 Coagulation from Gravitational Settling 561
13A.4 Brownian Coagulation and External Force Fields 562
Appendix 13.2 Solution of (13.73) 567
Problems 568
References 571
Chapter 14 | Atmospheric Organic Aerosols 573
14.1 Chemistry of Secondary Organic Aerosol Formation 574
14.1.1 Oxidation State of Organic Compounds 576
14.1.2 Generation of Highly Oxygenated Species by Autoxidation 579
14.2 Volatility of Organic Compounds 582
14.3 Idealized Description of Secondary Organic Aerosol Formation 583
14.3.1 Noninteracting Secondary Organic Aerosol Compounds 583
14.3.2 Formation of Binary Ideal Solution with Preexisting Aerosol 586
14.3.3 Formation of Binary Ideal Solution with Other Organic Vapor 588
14.4 Gas–Particle Partitioning 590
14.4.1 Gas–Particle Equilibrium 590
14.4.2 Effect of Aerosol Water on Gas–Particle Partitioning 594
14.5 Models of SOA Formation and Evolution 596
14.5.1 The Volatility Basis Set 597
14.5.2 Two-Dimensional SOA Models 603
14.6 Primary Organic Aerosol 605
14.7 The Physical State of Organic Aerosols 608
16.3.1 The Gas Constant for Moist Air 671
16.3.2 Level of Cloud Formation: The Lifting Condensation Level 671
16.3.3 Dew-point and Wet-Bulb Temperatures 673
16.3.4 The Moist Adiabatic Lapse Rate 675
16.3.5 Stability of Moist Air 679
16.3.6 Convective Available Potential Energy (CAPE) 680
16.3.7 Thermodynamic Diagrams 681
16.4 Basic Conservation Equations for the Atmospheric Surface Layer 683
16.4.1 Turbulence 687
16.4.2 Equations for the Mean Quantities 688
16.4.3 Mixing-Length Models for Turbulent Transport 690
16.5 Variation of Wind with Height in the Atmosphere 692
16.5.1 Mean Velocity in the Adiabatic Surface Layer over a Smooth Surface 693
16.5.2 Mean Velocity in the Adiabatic Surface Layer over a Rough Surface 694
16.5.3 Mean Velocity Profiles in the Nonadiabatic Surface Layer 695
16.5.4 The Pasquill Stability Classes Estimation of L 698
16.5.5 Empirical Equation for the Mean Windspeed 700
Appendix 16.1 Properties of Water and Water Solutions 701
16A.1 Specific Heat of Water and Ice 701
16A.2 Latent Heats of Vaporization and Melting for Water 701
16A.3 Water Surface Tension 701
Appendix 16.2 Derivation of the Basic Equations of Surface-Layer Atmospheric Fluid Mechanics 702
Problems 705
References 706
Chapter 17 | Cloud Physics 708
17.1 Equilibrium of Water Droplets in the Atmosphere 708
17.1.1 Equilibrium of a Pure Water Droplet 708
17.1.2 Equilibrium of a Flat Water Solution 710
17.1.3 Atmospheric Equilibrium of an Aqueous Solution Drop 712
17.1.4 Atmospheric Equilibrium of an Aqueous Solution Drop Containing an Insoluble Substance 717
17.2 Cloud and Fog Formation 719
17.2.1 Isobaric Cooling 720
17.2.2 Adiabatic Cooling 720
17.2.3 A Simplified Mathematical Description of Cloud Formation 721
17.3 Growth Rate of Individual Cloud Droplets 723
17.4 Growth of a Droplet Population 726
17.5 Cloud Condensation Nuclei 730
17.5.1 Ambient CCN 733
17.5.2 The Hygroscopic Parameter Kappa 733
17.6 Cloud Processing of Aerosols 736
17.6.1 Nucleation Scavenging of Aerosols by Clouds 736
17.6.2 Chemical Composition of Cloud Droplets 737
17.6.3 Nonraining Cloud Effects on Aerosol Concentrations 739
17.6.4 Interstitial Aerosol Scavenging by Cloud Droplets 742
17.7 Other Forms of Water in the Atmosphere 743
17.7.1 Ice Clouds 743
17.7.2 Rain 747
Appendix 17 Extended Köhler Theory 751
17A.1 Modified Form of Köhler Theory for a Soluble Trace Gas 751
17A.2 Modified Form of Köhler Theory for a Slightly Soluble Substance 754
17A.3 Modified Form of Köhler Theory for a Surface-Active Solute 755
17A.4 Examples 756
Problems 759
References 760

Chapter 18 | Atmospheric Diffusion 763
18.1 Eulerian Approach 763
18.2 Lagrangian Approach 766
18.3 Comparison of Eulerian and Lagrangian Approaches 767
18.4 Equations Governing the Mean Concentration of Species in Turbulence 767
18.4.1 Eulerian Approaches 767
18.4.2 Lagrangian Approaches 769
18.5 Solution of the Atmospheric Diffusion Equation for an Instantaneous Source 771
18.6 Mean Concentration from Continuous Sources 772
18.6.1 Lagrangian Approach 772
18.6.2 Eulerian Approach 776
18.6.3 Summary of Continuous Point Source Solutions 777
18.7 Statistical Theory of Turbulent Diffusion 778
18.7.1 Qualitative Features of Atmospheric Diffusion 778
18.7.2 Motion of a Single Particle Relative to a Fixed Axis 780
18.8 Summary of Atmospheric Diffusion Theories 783
18.9 Analytical Solutions for Atmospheric Diffusion: the Gaussian Plume Equation and Others 784
18.9.1 Gaussian Concentration Distributions 784
18.9.2 Derivation of the Gaussian Plume Equation as a Solution of the Atmospheric Diffusion Equation 786
18.9.3 Summary of Gaussian Point Source Diffusion Formulas 791
18.10 Dispersion Parameters in Gaussian Models 791
18.10.1 Correlations for y and z Based on Similarity Theory 791
18.10.2 Correlations for y and z Based on Pasquill Stability Classes 795
18.11 Plume Rise 796
18.12 Functional Forms of Mean Windspeed and Eddy Diffusivities 798
18.12.1 Mean Windspeed 800
18.12.2 Vertical Eddy Diffusion Coefficient Kzz 800
18.12.3 Horizontal Eddy Diffusion Coefficients Kxx and Kyy 803
18.13 Solutions of the Steady-State Atmospheric Diffusion Equation 803
18.13.1 Diffusion from a Point Source 804
18.13.2 Diffusion from a Line Source 805
Appendix 18.1 Further Solutions of Atmospheric Diffusion Problems 807
18A.1 Solution of (18.29) (18.31) 807
18A.2 Solution of (18.50) and (18.51) 809
18A.3 Solution of (18.59) (18.61) 810
Appendix 18.2 Analytical Properties of the Gaussian Plume Equation 811
Problems 815
References 823
PART V | Dry and Wet Deposition
Chapter 19 | Dry Deposition 829
19.1 Deposition Velocity 829
19.2 Resistance Model for Dry Deposition 830
19.3 Aerodynamic Resistance 834
19.4 Quasilaminar Resistance 835
19.4.1 Gases 836
19.4.2 Particles 836
19.5 Surface Resistance 839
19.5.1 Surface Resistance for Dry Deposition of Gases to Water 841
19.5.2 Surface Resistance for Dry Deposition of Gases to Vegetation 845
19.6 Measurement of Dry Deposition 849
19.6.1 Direct Methods 849
19.6.2 Indirect Methods 850
19.6.3 Comparison of Methods 851
19.7 Some Comments on Modeling and Measurement of Dry Deposition 851
Problems 852
References 854

Chapter 20 | Wet Deposition 856
20.1 General Representation of Atmospheric Wet Removal Processes 856
20.2 Below–Cloud Scavenging of Gases 860
20.2.1 Below–Cloud Scavenging of an Irreversibly Soluble Gas 861
20.2.2 Below–Cloud Scavenging of a Reversibly Soluble Gas 864
20.3 Precipitation Scavenging of Particles 868
20.3.1 Raindrop Aerosol Collision Efficiency 870
20.3.2 Scavenging Rates 871
20.4 In–Cloud Scavenging 873
20.5 Acid Deposition 874
20.5.1 Acid Rain Overview 874
20.5.2 Surface Water Acidification 876
20.5.3 Cloudwater Deposition 877
20.5.4 Fogs and Wet Deposition 877
20.6 Acid Deposition Process Synthesis 878
20.6.1 Chemical Species Involved in Acid Deposition 878
20.6.2 Dry versus Wet Deposition 878
20.6.3 Chemical Pathways for Sulfate and Nitrate Production 878
20.6.4 Source Receptor Relationships 879
20.6.5 Linearity 880
Problems 881
References 886

PART VI | The Global Atmosphere, Biogeochemical Cycles, and Climate

Chapter 21 | General Circulation of the Atmosphere 891
21.1 Hadley Cell 893
21.2 Ferrell Cell and Polar Cell 893
21.3 Coriolis Force 895
21.4 Geostrophic Windspeed 897
21.4.1 Buys Ballot’s Law 899
21.4.2 Ekman Spiral 900
21.5 The Thermal Wind Relation 902
21.6 Stratospheric Dynamics 905
21.7 The Hydrologic Cycle 905
Problems 906
References 907

Chapter 22 | Global Cycles: Sulfur and Carbon 908
22.1 The Atmospheric Sulfur Cycle 908
22.2 The Global Carbon Cycle 912
22.2.1 Carbon Dioxide 912
22.2.2 Compartmental Model of the Global Carbon Cycle 914
22.2.3 Atmospheric Lifetime of CO2 921
22.3 Solution for a Steady-State Four-Compartment Model of the Atmosphere 923
Problems 927
References 929

Chapter 23 | Global Climate 931
23.1 Earth’s Energy Balance 931
23.2 Radiative Forcing 933
23.2.1 Climate Sensitivity 934
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct.

<table>
<thead>
<tr>
<th>Product Name:</th>
<th>Atmospheric Chemistry and Physics. From Air Pollution to Climate Change. 3rd Edition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Web Address:</td>
<td>http://www.researchandmarkets.com/reports/3387179/</td>
</tr>
<tr>
<td>Office Code:</td>
<td>SCBR8YSI</td>
</tr>
</tbody>
</table>

Product Format
Please select the product format and quantity you require:

| Quantity | Hard Copy (Hard Back): USD 138 + USD 29 Shipping/Handling |

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in **BLOCK CAPITALS**

<table>
<thead>
<tr>
<th>Title:</th>
<th>Mr</th>
<th>Mrs</th>
<th>Dr</th>
<th>Miss</th>
<th>Ms</th>
<th>Prof</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Name:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Last Name:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Email Address:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Job Title:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organisation:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Address:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>City:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Postal / Zip Code:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phone Number:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fax Number:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:

Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:

<table>
<thead>
<tr>
<th>Account number</th>
<th>833 130 83</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sort code</td>
<td>98-53-30</td>
</tr>
<tr>
<td>Swift code</td>
<td>ULSBIE2D</td>
</tr>
<tr>
<td>IBAN number</td>
<td>IE78ULSB98533083313083</td>
</tr>
</tbody>
</table>
| Bank Address | Ulster Bank,
 27-35 Main Street,
 Blackrock,
 Co. Dublin,
 Ireland. |

If you have a Marketing Code please enter it below:

Marketing Code: ____________________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp