Cytogenetics - Technologies, Markets and Companies

Description:
This report deals with cytogenetics in a broader sense rather than the classical use mainly to describe the chromosome structure and identify abnormalities related to disease. In the age of molecular biology, it is also referred to as molecular cytogenetics. Historical landmarks in the evolution of cytogenetics are reviewed since the first images of chromosomes were made in 1879. The scope of cytogenetics includes several technologies besides fluorescence in situ hybridization (FISH), comparative genomic hybridization (CGH), and multicolor FISH. Molecular cytogenetics includes application of nanobiotechnology, microarrays, real-time polymerase chain reaction (PCR), in vivo imaging, and single molecule detection. Bioinformatics is described briefly as it plays an important role in analyzing data from many of these technologies.

FISH remains the single most important technology in cytogenetics. Several innovations are described of which the most important are single copy FISH, in vivo FISH (imaging of nucleic acids in living cells) and nanotechnology-based FISH. The unique character of peptide nucleic acid (PNA) allows these probes to hybridize to target nucleic acid molecules more rapidly and with higher affinity and specificity compared with DNA probes. PNA-FISH is more suited for rapid diagnosis of infections. RNA-FISH and locked nucleic acids (LNAs), are also described.

Microarray/biochip-based technologies for cytogenetics promise to speed up detection of chromosome aberrations now examined by FISH. Other important genomic technologies are whole genome expression array and direct molecular analysis without amplification. Analysis of single-cell gene expression promises a more precise understanding of human disease pathogenesis and has important diagnostic applications. Optical Mapping can survey entire human genomes for insertions/deletions, which account for a significantly greater proportion of genetic variation between closely-related genomes as compared to single nucleotide polymorphisms (SNPs), and are a major cause of gene defects.

Technologies encompassed within molecular imaging include optical imaging, magnetic resonance imaging (MRI) and nuclear medicine techniques. Positron emission tomography (PET) is the most sensitive and specific technique for imaging molecular pathways in vivo in humans. Cytogenetics can be refined by application of cytogenetics at single molecule level. Nanotechnology has facilitated the development of technology for single molecule imaging. Atomic force microscope (AFM) has become a well-established technique for imaging single biomolecules under physiological conditions. The scanning probe microscope (SPM) system is emerging as an increasingly important tool for non-intrusive interrogation of biomolecular systems in vitro and have been applied to improve FISH. Another example of application of nanobiotechnology is QD (quantum dot)-FISH probes, which can detect down to the single molecule level.

There are connections between cytogenetics and biomarkers of genetic disorders as well as cancer. Biomarkers are very important for molecular diagnostics. Not only are molecular diagnostic technologies used for discovery of biomarkers, biomarkers are the basis of several diagnostics. As a means to understand pathomechanism of disease and as links between diagnostics and therapeutics, biomarkers are playing a role in development of personalized medicine. Application of cytogenetics extend beyond genetic disorder and cancer to diagnosis of several other diseases. Other important applications are drug discovery, and development of personalized medicine.

The chapter on markets provides a global perspective of the cytogenetics business in the major markets: US, Western Europe (including France, Germany, Italy, Spain, and the UK), and Japan. The total figures for the market are also broken out according to the technologies and major disease areas in which they are applied. Markets figure are given for the year 2016 and estimates are made for the years 2021 and 2026. Advantages and limitations of various technologies have been pointed out throughout the report but this chapter includes SWOT (Strengths, Weaknesses, Opportunities and Threats) analysis of some of the competing technologies including the following: conventional FISH, innovative FISH technologies, PCR-based assays, and single molecule imaging. Unfulfilled needs in cytogenetics market are depicted graphically. Among various technologies, FISH is most advanced and less opportunities for further development than single molecule detection, which is in infancy and has more future potential.

The report includes summary profiles of 69 companies relevant to cytogenetics along with their 80 collaborations. Companies developing innovative technologies as well as those supplying equipment/services/reagents are identified. The report text is supplemented with 27 Tables and 9 figures.
Selected 200 references are included in the bibliography.

The following areas are covered in this report:

- Introduction to cytogenetics
- Technologies used for cytogenetics
- Fluorescent in situ hybridization
- Genomic technologies relevant to cytogenetics
- Molecular imaging and single molecular detection
- Role of nanobiotechnology in cytogenetics
- Biomarkers and cytogenetics
- Applications of cytogenetics
- Cancer cytogenetics
- Markets for cytogenetics
- Companies

Contents:

0. Executive Summary

1. Introduction
 Definitions
 Historical evolution of cytogenetics
 Scope of cytogenetics
 Molecular cytogenetics
 Basics of molecular biology relevant to cytogenetics
 DNA
 RNA
 DNA transcription
 Chromosomes
 Mitochondrial DNA
 Genes
 The genetic code
 Gene expression
 The human genome
 Variations in the human genome
 Variations in DNA sequences
 Single nucleotide polymorphisms
 Copy number variations in the human genome
 Genotype and haplotypes
 Complex chromosomal rearrangements
 Insertions and deletions in the human genome
 Large scale variation in human genome
 Structural variations in the human genome
 Replication of the DNA helix
 Transposons
 Mapping and sequencing of structural variation from human genomes

2. Technologies used for cytogenetics
 Introduction
 Quantitative fluorescent polymerase chain reaction
 RNA interference and cytogenetics
 RNA-induced transcriptional silencing complex
 Single cell genetics by siRNA ablation
 RNAi and cancer cytogenetics
 Role of miRNAs in cancer cytogenetics
 Preimplantation genetic diagnosis
 Preimplantation genetic haplotyping
 Bioinformatics and cytogenetics
 FISH probe design software
 LS-CAP algorithm
 Distance-based clustering of CGH data

3. Fluorescent In Situ Hybridization
Introduction
Innovative FISH technologies
Automation of FISH
Chromogenic in situ hybridization (CISH)
Direct visual in situ hybridization
Direct labeled Satellite FISH probes
Fiber FISH
FISH with telomere-specific probes
High-throughput quantitative FISH
In vivo FISH
Interphase FISH
Intron chromosomal expression FISH
Multicolor FISH
Multicolor chromosome banding
Oligonucleotide FISH
peT-FISH™
Primed in situ labeling
RNA-FISH
Single copy FISH probes
Use of peptide nucleic acid with FISH
Use of locked nucleic acids with FISH
Applications of FISH
Companies involved in FISH diagnostics

4. Genomic Technologies relevant to Cytogenetics
Introduction
Karyotyping based on sequencing
Microarrays/biochips for cytogenetics
Microarrays vs karyotyping
Tissue microarrays
Chromosome copy number analysis
Combination of FISH and gene chips
Combination of CGH+SNP microarrays
SignatureChip®
Molecular Combing
High density oligonucleotide arrays
Next Generation Screening®
Comparative genomic hybridization
Array-based comparative genomic hybridization
aCGH vs karyotyping
Comparison of array CGH and multipoint FISH
Combined use of tissue microarrays and aCGH
Single-cell array CGH
Regulatory requirements for array CGH
Future prospects of aCGH
Whole genome expression microarrays
Life Technologies Expression Array System
ArrayIt's® H25K
CytoScan® HD Array
Optical Mapping
Single cell cytogenetics
Single cell PCR
LATE-PCR
AmpliGrid-System
Digital Counting
Analysis of single-cell gene expression
Fluorescent in situ RNA sequencing
Application of single cell cytogenetics in preimplantation genetic testing
Direct molecular analysis without amplification

5. Molecular Imaging & Single Molecular Detection
Molecular imaging
Companies involved in molecular imaging
6. Role of Nanobiotechnology in Cytogenetics

Introduction
Nanobiology and the cell
Visualization on nanoscale
Application of AFM for biomolecular imaging
Future insights into biomolecular processes by AFM
Use of AFM for microdissection of chromosomes
Scanning probe microscopy
Near-field scanning optical microscopy
Multiple single-molecule fluorescence microscopy
Nanoscale scanning electron microscopy
Nanotechnology-based FISH
Study of chromosomes by atomic force microscopy
Quantum dot FISH
Nanobiotechnology for single molecule detection
Nanolaser spectroscopy for detection of cancer in single cells
Carbon nanotube transistors for genetic screening
Quantum-dots-FRET nanosensors for single molecule detection
3D single-molecular imaging by nanotechnology
Manipulation of DNA sequence by use of nanoparticles
Nano-fluidic/nanoarray devices to detect a single molecule of DNA
Nanopore technology
Portable nanocantilever system for diagnosis
Nanobiosensors

7. Biomarkers and Cytogenetics

Introduction
Definitions
Biomarkers and cytogenetics
Cancer biomarkers
Technologies for detection of cancer biomarkers
Telomerase as a biomarker of cancer
Digital karyotyping for cancer biomarkers
Optical systems for in vivo molecular imaging of cancer
Circulating cancer cells in blood as biomarkers of cancer
Array CGH for biomarker discovery in cancer
Genetic biomarkers

8. Applications of Cytogenetics

Introduction
Applications of cytogenetics in research
Cytogenetics of embryonic stem cells
Genetic disorders
Technologies for diagnosis of genetic disorders
Cytogenetic microarrays for diagnosis of mental retardation
Detection of copy number variations in genetic disorders
Detection of non-recurrent DNA rearrangements by aCGH
Quantitative fluorescent PCR
Representational oligonucleotide microarray analysis
SignatureChip®-based diagnostics for cytogenetic abnormalities
Screening for cytogenetic abnormalities
Cytogenetics in prenatal diagnosis
aCGH for prenatal diagnosis
BAC HD Scan test
FISH for prenatal diagnosis
PCR for prenatal diagnosis of trisomy 21
Plasma DNA sequencing to detect fetal chromosomal aneuploidies
Concluding remarks and future prospects of prenatal diagnosis
Cytogenetics in preimplantation genetic diagnosis
Array CGH for PGD
Fluorescent PCR for PGD
FISH for PGD
PGD using whole genome amplification
Conditions detected by preimplantation cytogenetic diagnosis
The future of preimplantation genetic diagnosis
Disorders of the nervous system
Application of cytogenetics in epilepsy
Neuropsychiatric disorders in children
Cardiovascular disorders
Infections
PNA-FISH for diagnosis of infections
Diagnosis of bacterial infections at single molecule level
Detection of single virus particles
Role of cytogenetics in drug discovery and development
Role of cytogenetics in the development of personalized medicine
Relation of cytogenetics to personalized medicine
Cytomics as a basis for personalized medicine
Molecular imaging and personalized medicine
Cytogenetics for gender determination
Gender determination in competitive sport
Gender determination in forensic cases
Regulatory aspects of FISH

9. Cancer Cytogenetics
Cancer genetics
Cytogenetic abnormalities in cancer
Cytogenetic technologies for molecular diagnosis of cancer
Applications of aCGH in oncology
Cytogenetics of tumor cells in body fluids
Cytogenetics and microRNAs
FISH-based techniques
FISH on paraffin-embedded tissues
High-throughput Imaging Position Mapping
Gene expression profiles predict chromosomal instability in tumors
Loss of heterozygosity
Molecular Combing for cancer diagnosis
Mutation detection at molecular level
Proteomic identification of oncogenic chromosomal translocation partners
SNPs and cytogenetics
Tissue microarrays for cancer diagnosis
Applications of cytogenetics in molecular diagnosis of cancer
Molecular cytogenetics in hematological malignancies
Chromosome translocations in leukemias
Cytogenetics diagnostics for leukemia
Cytogenetics of acute myeloid leukemia
Detection of p53 deletions in chronic lymphocytic leukemia
Cytogenetics of lymphomas
Cytogenetics of myelodysplastic syndrome
Cytogenetics of plasma cell myeloma
Bladder cancer
Bone and soft tissue tumors
Brain tumors
Breast cancer
Chromosomal aberrations in breast carcinomas
FISH vs CISH and SISH for determining of HER-2/neu amplification
Genomic profiles of breast cancer
Colorectal cancer
Lung cancer
Ovarian cancer
aCGH analyses of cisplatin-resistant ovarian cancer cells
Prostate cancer
Renal cancer
Thyroid cancer
Cytogenetics-based anticancer strategies
aCGH-based strategies for targeting cancer pathways
Allele-specific inhibition
Prognostic and therapeutic significance of gene amplifications
RNAi-based approach for leukemia
Significance of double minutes
Online resources for cancer cytogenetics
The Cancer Genome Atlas
Concluding remarks on cancer cytogenetics

10. Cytogenetics Markets
Introduction
Methods for study of cytogenetic markets
Cytogenetic markets according to technologies
Market for FISH technologies
Array CGH markets
Sorting the markets of overlapping technologies
Markets for cytogenetics according to therapeutic areas
Geographical distribution of markets for cytogenetics
SWOT of competing technologies
Unfulfilled needs
Limitations of current technologies
Promising future developments in cytogenetics
Commercial aspects of genome sequencing technologies
Cost of genotyping

11. Companies
Profiles of companies
Collaborations

12. References

Tables
Table 1-1: Historical landmarks in the evolution of cytogenetics
Table 2-1: A classification of technologies used for cytogenetics
Table 3-1: Classification and scope of FISH and related technologies
Table 3-2: A selection of companies with FISH diagnostics
Table 4-1: Microarray/biochip-based technologies for cytogenetics
Table 4-2: Chromosomal structural abnormalities detected by CGH
Table 4-3: Companies with whole genome chips/microarrays
Table 5-1: Companies involved in developing molecular imaging
Table 5-2: Technologies for single molecule detection
Table 6-1: Nanobiotechnologies for single molecule detection
Table 7-1: Types of cancer biomarkers relevant to cytogenetics
Table 8-1: Applications of cytogenetics
Table 8-2: Application of preimplantation cytogenetic diagnosis in monogenic disorders
Table 9-1: WHO classification of myelodysplastic syndromes
Table 9-2: Fusion genes in in malignant bone and soft tissue tumors
Table 9-3: Fusion genes in adenocarcinoma of the thyroid
Table 10-1: Cytogenetic markets according to technologies from 2016-2026
Table 10-2: Market size for cytogenetics according to applications 2016-2026
Table 10-3: Global cytogenetics markets 2016-2026
Table 10-4: SWOT of conventional FISH
Table 10-5: SWOT of innovative FISH technologies
Table 10-6: SWOT of PCR-based assays
Table 10-7: SWOT of aCGH
Table 10-8: SWOT of single molecule imaging
Table 11-1: Major suppliers of reagents/services/equipment for cytogenetics
Table 11-2: Major consumers of reagents
Table 11-3: Companies developing innovative technologies in cytogenetics
Table 11-4: Collaborations in cytogenetics

Figures
Figure 6-1: Scheme of a novel optical mRNA biosensor
Figure 8-1: Relation of various technologies to drug discovery and development
Figure 8-2: Relation of cytogenetics to personalized medicine
Figure 8-3: Relation of cytomics to personalized medicine
Figure 9-1: Basic scheme of genome-wide screening techniques for cancer
Figure 10-1: Distribution of applications of cytogenetics in the year 2021
Figure 10-2: Distribution of applications of cytogenetics in the year 2026
Figure 10-3: Unfulfilled needs in cytogenetics according to technologies
Figure 10-4: Unfulfilled needs in cytogenetics according to areas of application

Ordering:
Order Online - http://www.researchandmarkets.com/reports/344168/
Order by Fax - using the form below
Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit
http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct and select the format(s) you require.

Product Name: Cytogenetics - Technologies, Markets and Companies
Web Address: http://www.researchandmarkets.com/reports/344168/
Office Code: SCWPOKUR

Product Formats
Please select the product formats and quantity you require:

<table>
<thead>
<tr>
<th>Product Format</th>
<th>Quantity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronic - Single User</td>
<td>□</td>
<td>USD 2500</td>
</tr>
<tr>
<td>Hard Copy</td>
<td>□</td>
<td>USD 2800 + USD 56 Shipping/Handling</td>
</tr>
<tr>
<td>Electronic - Enterprisewide</td>
<td>□</td>
<td>USD 7500</td>
</tr>
<tr>
<td>Electronic and Hard Copy (PDF) - Single User:</td>
<td>□</td>
<td>USD 3200 + USD 56 Shipping/Handling</td>
</tr>
</tbody>
</table>

* Shipping/Handling is only charged once per order.
* The price quoted above is only valid for 30 days. Please submit your order within that time frame to avail of this price as all prices are subject to change.

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title: Mr □ Mrs □ Dr □ Miss □ Ms □ Prof □
First Name: ___________________________ Last Name: ___________________________
Email Address: * ___________________________
Job Title: ___________________________
Organisation: ___________________________
Address: ___________________________
City: ___________________________
Postal / Zip Code: ___________________________
Country: ___________________________
Phone Number: ___________________________
Fax Number: ___________________________

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:

Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:

<table>
<thead>
<tr>
<th>Account number</th>
<th>833 130 83</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sort code</td>
<td>98-53-30</td>
</tr>
<tr>
<td>Swift code</td>
<td>ULSBIE2D</td>
</tr>
<tr>
<td>IBAN number</td>
<td>IE78ULSB98533083313083</td>
</tr>
<tr>
<td>Bank Address</td>
<td>Ulster Bank, 27-35 Main Street, Blackrock, Co. Dublin, Ireland</td>
</tr>
</tbody>
</table>

If you have a Marketing Code please enter it below:

Marketing Code: ______________________

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World