The Global Market for Carbon Nanotubes and Graphene in Energy

Description: Developing clean and renewable energy is crucial for meeting increasingly world energy needs (it is estimated that the world will need to double its energy supply by 2050) that have arisen from population increases and economic expansion in countries such as China and Brazil.

The need to reduce dependence on fossil fuels, global warming and pollution is also of vital importance. As a result, there is a drive for new technologies for energy storage (batteries and supercapacitors) and energy conversion (solar cells and fuel cells). As the performance of these technologies is dependent on the materials utilized, nanomaterials are providing the impetus for new product innovation.

Numerous studies have demonstrated the potential of graphene and CNT-nanocomposite hybrids to improve the performance of energy storage/conversion devices (e.g., Li ion batteries, supercapacitors, fuel cells, and solar cells).

Graphene has unique properties, including high specific surface area (2630 m2/g), good chemical stability and excellent electrical conductivity. These properties make graphene to be an excellent candidate as a catalyst support for energy conversion and storage applications. Graphene nanolaminate can increase the effectiveness of lithium-ion batteries when used to formulate electrodes, yielding vastly shorter recharge times. The potential of graphene as hydrogen storage materials is also under investigation, as it has a large surface for hydrogen adsorption.

A number of companies are developing energy storage applications for graphene, where it could potentially replace the graphite electrodes found in batteries, supercapacitors and fuel cells. Most activity at present is utilizing graphene as an additive for lithium-ion batteries (LIB) and supercapacitors. Companies are also developing graphene as an ITO replacement material in organic solar cells.

Lithium ion battery electrode designs employing carbon nanotubes (CNTs) have recently demonstrated increased battery energy densities through use as a conductive additive and as a current collector replacement. CNTs as current collectors provide a flexible, lightweight, conductive structure to effectively support high capacity, nanostructured anode active materials like Si and Ge.

The Global Market for Carbon Nanotubes and Graphene in Energy examines opportunities, products, revenues and companies.

Contents: 1. Executive Summary
- Carbon Nanotubes
- Exceptional Properties
- Products And Applications
- Threat From The Graphene Market
- Production
- Multi-Walled Nanotube (Mwnt) Production
- Single-Walled Nanotube (Swnt) Production
- Global Demand For Carbon Nanotubes
- Current Products
- Future Products
- Market Drivers And Trends
- Electronics
- Market And Production Challenges
- Safety Issues
- Dispersion
- Synthesis And Supply Quality
- Cost
- Competition From Other Materials
- Graphene
- Remarkable Properties
- Global Funding
- Products And Applications
- Production
- Market Drivers And Trends
- Production Exceeds Demand
- Market Revenues Remain Small But Are Growing
- Scalability And Cost
- Applications Hitting The Market
- Wait And See?
- Asia And Us Lead The Race
- Competition From Other Materials
- Market And Technical Challenges
- Supply Quality
- Cost
- Product Integration
- Regulation And Standards

2. Introduction
- Properties Of Nanomaterials
- Categorization
- Carbon Nanotubes
- Multi-Walled Nanotubes (Mwnt)
- Single-Wall Carbon Nanotubes (Swnt)
- Single-Chirality
- Double-Walled Carbon Nanotubes (Dwnts)
- Few-Walled Carbon Nanotubes (FWNTS)
- Carbon Nanohorns (Cnhs)
- Fullerenes
- Boron Nitride Nanotubes (Bnnts)
- Properties
- Applications Of Carbon Nanotubes
- High Volume Applications
- Low Volume Applications
- Novel Applications
- Graphene
- 3D Graphene
- Graphene Quantum Dots
- Properties
- Carbon Nanotubes Versus Graphene
- Cost And Production
- Carbon Nanotube-Graphene Hybrids

3. Patents And Publications
- Carbon Nanotubes
- Graphene
- Fabrication Processes
- Academia
- Regional Leaders

4. Technology Readiness Level

5. End User Market Segment Analysis
- Carbon Nanotubes Production Volumes 2010-2025
- Regional Demand For Carbon Nanotubes
- Japan
- China
- Main Carbon Nanotubes Producers
- Swnt Production
- Ocsial
- Fgv Cambridge Nanosystems
- Zeon Corporation
- Price Of Carbon Nanotubes-MWNTS, SWNTS And FWNTS
- Graphene Production Volumes 2010-2025
6. Energy Storage, Conversion And Exploration
- Batteries
- Market Drivers And Trends
- Market Size And Opportunity
- Properties And Applications
- Challenges
- Supercapacitors
- Market Drivers And Trends
- Problems With Activated Carbon
- Market Size And Opportunity
- Properties And Applications
- Challenges
- Photovoltaics
- Market Drivers And Trends
- Market Size And Opportunity
- Properties And Applications
- Fuel Cells
- Market Drivers
- Market Size And Opportunity
- Properties And Applications
- Challenges
- LED Lighting And UVC
- Market Drivers And Trends
- Market Size
- Properties And Applications
- Oil And Gas
- Market Drivers And Trends
- Market Size And Opportunity
- Properties And Applications
- Product Developers
- Carbon Nanotubes
- Graphene

7. Carbon Nanotubes Energy Company Profiles

8. Graphene Energy Company Profiles

References

List of Tables
Table 1: Properties of CNTs and comparable materials.
Table 2: Carbon nanotubes target markets-Applications, stage of commercialization and potential addressable market size.
Table 3: Annual production capacity of MWNT and SWNT producers.
Table 4: SWNT producers production capacities 2014.
Table 5: Global production of carbon nanotubes, 2010-2025 in tons/year. Base year for projections is 2014.
Table 6: Graphene target markets-Applications, stage of commercialization and potential addressable market size.
Table 7: Graphene producers annual production capacities.
Table 8: Global production of graphene, 2010-2025 in tons/year. Base year for projections is 2014.
Table 9: Graphene types and cost per kg.
Table 10: Categorization of nanomaterials.
Table 11: Comparison between single-walled carbon nanotubes (SWCNT) and multi-walled carbon nanotubes.
Table 12: Properties of carbon nanotubes.
Table 13: Properties of graphene.
Table 14: Comparative properties of carbon materials.
Table 15: Comparative properties of graphene with nanoclays and carbon nanotubes.
Table 16: Published patent publications for graphene, 2004-2014.
Table 17: Leading graphene patentees.
Table 18: Industrial graphene patents in 2014.
Table 19: Market penetration and volume estimates (tons) for carbon nanotubes and graphene in key applications.
Table 20: Global production of carbon nanotubes, 2010-2025 in tons/year. Base year for projections is 2014.
Table 34: Current carbon nanotubes prices.
Table 22: Global production of graphene, 2010-2025 in tons/year. Base year for projections is 2014.
Table 23: Carbon nanotubes in the energy market-Applications, stage of commercialization and addressable market size.
Table 24: Graphene in the energy market-Applications, stage of commercialization and addressable market size.
Table 25: Comparative properties of graphene supercapacitors and lithium-ion batteries.
Table 26: Carbon nanotubes product and application developers in the energy industry.
Table 27: Graphene product and application developers in the energy industry.

List of Figures

Figure 1: Molecular structures of SWNT and MWNT.
Figure 2: Production capacities for SWNTS in kilograms, 2005-2014.
Figure 3: Global production of carbon nanotubes, 2010-2025 in tons/year. Base year for projections is 2014.
Figure 4: Global government funding for graphene.
Figure 5: Global market for graphene 2010-2025 in tons/year.
Figure 6: Conceptual diagram of single-walled carbon nanotube (SWNT) (A) and multi-walled carbon nanotubes (MWNT) (B) showing typical dimensions of length, width, and separation distance between graphene layers in MWNTs.
Figure 7: Schematic of single-walled carbon nanotube.
Figure 8: Double-walled carbon nanotube bundle cross-section micrograph and model.
Figure 9: Schematic representation of carbon nanohorns.
Figure 10: Fullerene schematic.
Figure 11: Schematic of Boron Nitride nanotubes (BNNTs). Alternating B and N atoms are shown in blue and red.
Figure 12: Graphene layer structure schematic.
Figure 13: Graphite and graphene.
Figure 14: Graphene and its descendants: top right: graphene; top left: graphite = stacked graphene; bottom right: nanotube=rolled graphene; bottom left: fullerene=wrapped graphene.
Figure 15: Graphene can be rolled up into a carbon nanotube, wrapped into a fullerene, and stacked into graphite.
Figure 16: CNT patents filed 2000-2014.
Figure 17: Patent distribution of CNT application areas to 2014.
Figure 18: Published patent publications for graphene, 2004-2014.
Figure 19: Technology Readiness Level (TRL) for Carbon Nanotubes.
Figure 20: Technology Readiness Level (TRL) for graphene.
Figure 21: Regional demand for CNTs utilized in transparent conductive films and displays.
Figure 22: Regional demand for CNTs utilized in batteries.
Figure 23: Regional demand for CNTs utilized in Polymer reinforcement.
Figure 24: Global production of graphene, 2010-2025 in tons/year. Base year for projections is 2014.
Figure 25: Nano Lithium X Battery.
Figure 26: Skeleton Technologies ultracapacitor.
Figure 27: Zapgo supercapacitor phone charger.
Figure 28: Suntech/TCNT nanotube frame module.
Figure 29: Solar cell with nanowires and graphene electrode.

Ordering:
Order Online - http://www.researchandmarkets.com/reports/3445965/
Order by Fax - using the form below
Order by Post - print the order form below and send to

Research and Markets,
Guinness Centre,
Taylors Lane,
Dublin 8,
Ireland.
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to 646-607-1907 (from USA) or +353-1-481-1716 (from Rest of World). If you have any questions please visit http://www.researchandmarkets.com/contact/

Order Information
Please verify that the product information is correct and select the format(s) you require.

Product Name: The Global Market for Carbon Nanotubes and Graphene in Energy
Web Address: http://www.researchandmarkets.com/reports/3445965/
Office Code: SCDKZCCO

Product Formats
Please select the product formats and quantity you require:

<table>
<thead>
<tr>
<th>Format</th>
<th>Quantity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronic (PDF) - Single User</td>
<td>☐</td>
<td>USD 1322</td>
</tr>
<tr>
<td>Electronic and Hard Copy (PDF) - Single User</td>
<td>☐</td>
<td>USD 1396 + USD 58 Shipping/Handling</td>
</tr>
<tr>
<td>Electronic (PDF) - Enterprisewide</td>
<td>☐</td>
<td>USD 1984</td>
</tr>
</tbody>
</table>

* Shipping/Handling is only charged once per order.

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title: Mr ☐ Mrs ☐ Dr ☐ Miss ☐ Ms ☐ Prof ☐
First Name: ____________________________ Last Name: ____________________________
Email Address: * ____________________________
Job Title: ____________________________
Organisation: ____________________________
Address: ____________________________
City: ____________________________
Postal / Zip Code: ____________________________
Country: ____________________________
Phone Number: ____________________________
Fax Number: ____________________________

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, AOL)
Payment Information

Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card: You will receive an email with a link to a secure webpage to enter your credit card details.

☐ Pay by check: Please post the check, accompanied by this form, to:
Research and Markets,
Guinness Center,
Taylors Lane,
Dublin 8,
Ireland.

☐ Pay by wire transfer: Please transfer funds to:
Account number 833 130 83
Sort code 98-53-30
Swift code ULSBIE2D
IBAN number IE78ULSB98533083313083
Bank Address Ulster Bank,
27-35 Main Street,
Blackrock,
Co. Dublin,
Ireland.

If you have a Marketing Code please enter it below:

Marketing Code:

Please note that by ordering from Research and Markets you are agreeing to our Terms and Conditions at http://www.researchandmarkets.com/info/terms.asp

Please fax this form to:
(646) 607-1907 or (646) 964-6609 - From USA
+353-1-481-1716 or +353-1-653-1571 - From Rest of World